首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Developing drought-tolerant rice varieties with higher yield under water stressed conditions provides a viable solution to serious yield-reduction impact of drought. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success of rice molecular breeding programmes. microRNAs have received tremendous attention recently due to its importance in negative regulation. In plants, apart from regulating developmental and physiological processes, microRNAs have also been associated with different biotic and abiotic stresses. Hence here we chose to analyze the differential expression profiles of microRNAs in three drought treated rice varieties: Vandana (drought-tolerant), Aday Sel (drought-tolerant) and IR64 (drought-susceptible) in greenhouse conditions via high-throughput sequencing.

Results

Twenty-six novel microRNA candidates involved in the regulation of diverse biological processes were identified based on the detection of miRNA*. Out of their 110 predicted targets, we confirmed 16 targets from 5 novel microRNA candidates. In the differential expression analysis, mature microRNA members from 49 families of known Oryza sativa microRNA were differentially expressed in leaf and stem respectively with over 28 families having at least a similar mature microRNA member commonly found to be differentially expressed between both tissues. Via the sequence profiling data of leaf samples, we identified osa-miR397a/b, osa-miR398b, osa-miR408-5p and osa-miR528-5p as being down-regulated in two drought-tolerant rice varieties and up-regulated in the drought-susceptible variety. These microRNAs are known to be involved in regulating starch metabolism, antioxidant defence, respiration and photosynthesis. A wide range of biological processes were found to be regulated by the target genes of all the identified differentially expressed microRNAs between both tissues, namely root development (5.3–5.7 %), cell transport (13.2–18.4 %), response to stress (10.5–11.3 %), lignin catabolic process (3.8–5.3 %), metabolic processes (32.1–39.5 %), oxidation-reduction process (9.4–13.2 %) and DNA replication (5.7–7.9 %). The predicted target genes of osa-miR166e-3p, osa-miR166h-5p*, osa-miR169r-3p* and osa-miR397a/b were found to be annotated to several of the aforementioned biological processes.

Conclusions

The experimental design of this study, which features rice varieties with different drought tolerance and tissue specificity (leaf and stem), has provided new microRNA profiling information. The potentially regulatory importance of the microRNA genes mentioned above and their target genes would require further functional analyses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1851-3) contains supplementary material, which is available to authorized users.  相似文献   

2.
MicroRNAs are implicated in the response to biotic stresses. Papaya meleira virus (PMeV) is the causal agent of sticky disease, a commercially important pathology in papaya for which there are currently no resistant varieties. PMeV has a number of unusual features, such as residence in the laticifers of infected plants, and the response of the papaya to PMeV infection is not well understood. The protein levels of 20S proteasome subunits increase during PMeV infection, suggesting that proteolysis could be an important aspect of the plant defense response mechanism. To date, 10,598 plant microRNAs have been identified in the Plant miRNAs Database, but only two, miR162 and miR403, are from papaya. In this study, known plant microRNA sequences were used to search for potential microRNAs in the papaya genome. A total of 462 microRNAs, representing 72 microRNA families, were identified. The expression of 11 microRNAs, whose targets are involved in 20S and 26S proteasomal degradation and in other stress response pathways, was compared by real-time PCR in healthy and infected papaya leaf tissue. We found that the expression of miRNAs involved in proteasomal degradation increased in response to very low levels of PMeV titre and decreased as the viral titre increased. In contrast, miRNAs implicated in the plant response to biotic stress decreased their expression at very low level of PMeV and increased at high PMeV levels. Corroborating with this results, analysed target genes for this miRNAs had their expression modulated in a dependent manner. This study represents a comprehensive identification of conserved miRNAs inpapaya. The data presented here might help to complement the available molecular and genomic tools for the study of papaya. The differential expression of some miRNAs and identifying their target genes will be helpful for understanding the regulation and interaction of PMeV and papaya.  相似文献   

3.
4.
This report presents computational methods of analysis of cellular processes, functions, and pathways affected by differentially expressed microRNA, a statistical basis of the gene enrichment analysis method, a modification of enrichment analysis method accounting for combinatorial targeting of Gene Ontology categories by multiple miRNAs and examples of the global functional profiling of predicted targets of differentially expressed miRNAs in cancer. We have also summarized an application of Ingenuity Pathway Analysis tools for in depth analysis of microRNA target sets that may be useful for the biological interpretation of microRNA profiling data. To illustrate the utility of these methods, we report the main results of our recent computational analysis of five published datasets of aberrantly expressed microRNAs in five human cancers (pancreatic cancer, breast cancer, colon cancer, lung cancer, and lymphoma). Using a combinatorial target prediction algorithm and statistical enrichment analysis, we have determined Gene Ontology categories as well as biological functions, disease categories, toxicological categories, and signaling pathways that are: targeted by multiple microRNAs; statistically significantly enriched with target genes; and known to be affected in specific cancers. Our recent computational analysis of predicted targets of co-expressed miRNAs in five human cancers suggests that co-expressed miRNAs provide systemic compensatory response to the abnormal phenotypic changes in cancer cells by targeting a broad range of functional categories and signaling pathways reportedly affected in a particular cancer.  相似文献   

5.
ABSTRACT: BACKGROUND: The HOX gene clusters are thought to be highly conserved amongst mammals and othervertebrates, but the long non-coding RNAs have only been studied in detail in human andmouse. The sequencing of the kangaroo genome provides an opportunity to use comparativeanalyses to compare the HOX clusters of a mammal with a distinct body plan to those ofother mammals. RESULTS: Here we report a comparative analysis of HOX gene clusters between an Australian marsupialof the kangaroo family and the eutherians. There was a strikingly high level of conservationof HOX gene sequence and structure and non-protein coding genes including the microRNAsmiRNA-196a, miRNA-196b, miRNA-10a and miRNA-10b and the long non-coding RNAsHOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expressionand controlling development. By microRNA deep sequencing and comparative genomicanalyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one newcandidate microRNA with typical hairpin precursor structure that is expressed in bothfibroblasts and testes was found. The prediction of microRNA target analysis showed thatseveral known microRNA targets, such as mir-10, mir-414 and mir-464, were found in thetammar HOX clusters. In addition, several novel and putative miRNAs were identified thatoriginated from elsewhere in the tammar genome and that target the tammar HOXB andHOXD clusters. CONCLUSIONS: This study confirms that the emergence of known long non-coding RNAs in the HOXclusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified anew potentially functional microRNA as well as conserved miRNAs. These non-codingRNAs may participate in the regulation of HOX genes to influence the body plan of thismarsupial.  相似文献   

6.
Down syndrome (DS), or Trisomy 21, is the most common genetic cause of cognitive impairment and congenital heart defects in the human population. To date, the contribution of microRNAs (miRNAs) in DS has not been investigated. Bioinformatic analyses demonstrate that human chromosome 21 (Hsa21) harbors five miRNA genes; miR-99a, let-7c, miR-125b-2, miR-155, and miR-802. MiRNA expression profiling, miRNA RT-PCR, and miRNA in situ hybridization experiments demonstrate that these miRNAs are overexpressed in fetal brain and heart specimens from individuals with DS when compared with age- and sex-matched controls. We hypothesize that trisomic 21 gene dosage overexpression of Hsa21-derived miRNAs results in the decreased expression of specific target proteins and contribute, in part, to features of the neuronal and cardiac DS phenotype. Importantly, Hsa21-derived miRNAs may provide novel therapeutic targets in the treatment of individuals with DS.  相似文献   

7.
8.
9.
10.
Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ∼20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants.  相似文献   

11.
12.
MicroRNAs are regulators in regulation of broad range of phenotypes. The purple urchin, Strongylocentrotus nudus, is one of the most important marine economic animals that widely distributed in the cold seas along the coasts of eastern pacific area. To date, only 45 microRNAs have been identified in a related species, Strongylocentrotus purpurtus, and there is no report on S. nudus microRNAs. Herein, solexa sequencing technology was used to high throughput sequencing analysis of microRNAs in small RNA library isolated from five tissues of S. nudus. Totally, 8,966,865 reads were yielded, 131,015 of which were related to 415 unique microRNAs including 345 deuterostoma conserved and 70 urchin specific microRNAs, as well as 5 microRNA* sequences. The miRNA features including length distribution, end variations and genomic locations were characterized. Annotation of targets revealed a broad range of biological processes and signal transduction pathways that regulated by urchin miRNAs, of which signal transduction mechanisms was the subgroup containing the maximum targets. In addition, the expression of 100 miRNAs in female gonad was confirmed using microRNA microarray analysis. This study provides a first large scale cloning and characterization of S.nudus miRNAs and their potential targets, providing the foundation for further characterization for their role in the regulation of diversity of physiological processes.  相似文献   

13.
microRNA-guided posttranscriptional gene regulation   总被引:4,自引:0,他引:4  
Chen PY  Meister G 《Biological chemistry》2005,386(12):1205-1218
  相似文献   

14.
15.
miR-1-2 gets to the heart of the matter   总被引:2,自引:0,他引:2  
Mishima Y  Stahlhut C  Giraldez AJ 《Cell》2007,129(2):247-249
Although many microRNAs (miRNAs) and their targets have been identified, the importance of miRNAs in vivo is still unclear. In this issue, Zhao et al. (2007) generate mice deficient in a cardiac-specific miRNA, miR-1-2, and reveal that this microRNA plays a crucial role in heart development and physiology.  相似文献   

16.
Computational identification of microRNA targets   总被引:16,自引:0,他引:16  
Recent experiments have shown that the genomes of organisms such as worm, fly, human, and mouse encode hundreds of microRNA genes. Many of these microRNAs are thought to regulate the translational expression of other genes by binding to partially complementary sites in messenger RNAs. Phenotypic and expression analysis suggests an important role of microRNAs during development. Therefore, it is of fundamental importance to identify microRNA targets. However, no experimental or computational high-throughput method for target site identification in animals has been published yet. Our main result is a new computational method that is designed to identify microRNA target sites. This method recovers with high specificity known microRNA target sites that have previously been defined experimentally. Based on these results, we present a simple model for the mechanism of microRNA target site recognition. Our model incorporates both kinetic and thermodynamic components of target recognition. When we applied our method to a set of 74 Drosophila melanogaster microRNAs, searching 3'UTR sequences of a predefined set of fly mRNAs for target sites which were evolutionary conserved between D. melanogaster and Drosophila pseudoobscura, we found that many key developmental body patterning genes such as hairy and fushi-tarazu are likely to be translationally regulated by microRNAs.  相似文献   

17.
18.
Oxidative stress is involved in the etiology of diabetes-induced cardiac dysfunction while microRNAs (miRNAs) are known as regulators for genes involved in cardiac remodeling. However, a functional link between miRNAs and diabetes-induced cardiac dysfunction remains to be investigated. Here, we aimed to identify whether the expression levels of miRNAs are associated with oxidative stress/diabetic heart and if proteins responsible from contractile activity during diabetes might be directly modulated by miRNAs. Diabetic cardiomyopathy developed with streptozotocin, is characterized with marked changes in sarcomere and mitochondria, depressed left ventricular developed pressure, and a massive oxidative stress that is particularly evident in the heart. miRNA profiling was performed in freshly isolated left ventricular cells from diabetic rats. Using microarray analysis, we identified marked changes in the expression of 43 miRNAs (37 of them were downregulated while 6 miRNAs were upregulated) out of examined total of 351 miRNAs. Among them, 6 miRNAs were further validated by real-time PCR. The expression levels of miR-1, miR-499, miR-133a, and miR-133b were markedly depressed in the diabetic cardiomyocytes while miR-21 level increased and miR-16 level was unchanged. Notably, normalization of cardiac function and oxidant/antioxidant level after N-acetylcysteine (NAC)-treatment of diabetic rats resulted with a significant restoration in the expression levels of miR-499, miR-1, miR-133a, and miR-133b in the myocardium. Since changes in the level of muscle-specific miR-1 has been implicated in cardiac diseases and its specific molecular targets involved in its action, in part, associated with oxidative stress are limited, we first examined the protein levels of some SR-associated proteins such as junctin and triadin. Junctin but not triadin is markedly overexpressed in diabetic cardiomyocytes while its level was normalized in NAC-treated diabetics. Luciferase reporter assay showed that junctin is targetted by miR-1. Taken together, our data demonstrates that intervention with an antioxidant treatment for 4-week leads to significant cardioprotection against diabetes-induced injury, controlling oxidant/antioxidant level, which may directly control the levels of some miRNAs including miR-1 and its target protein junctin, which is involved in the development of diabetic cardiomyopathy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号