首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The purpose of this study was to investigate the influence of gender and somatotypes on single-leg upright standing postural stability in children. A total of 709 healthy children from different schools were recruited to measure the anthropometric somatotypes and the mean radius of center of pressure (COP) on a force platform with their eyes open and eyes closed. The results were that (a) girls revealed significantly smaller mean radius of COP distribution than boys, both in the eyes open and eyes closed conditions, and (b) the mesomorphic, muscular children had significantly smaller mean radius of COP distribution than the endomorphic, fatty children and the ectomorphic, linear children during the eyes closed condition. The explanation for gender differences might be due to the larger body weight in boys. The explanation for somatotype differences might be due to the significantly lower body height and higher portion of muscular profile in the mesomorphic children.  相似文献   

2.
Technical advancements in instrumentation and analytical methods have improved the ability of assessing balance control. This study investigated the effects of early stages of aging on postural sway using traditional and contemporary postural indices from different domains. Eleven healthy young adults and fourteen healthy non-faller older adults performed two postural tasks: (a) functional limits of stability and (b) unperturbed bipedal stance for 120 s. Postural indices from spatial, temporal, frequency, and structural domains were extracted from the body’s center of pressure (COP) signals and its Rambling and Trembling components. Results revealed a preservation of functional limits of upright stability in older adults accompanied by larger, faster, and shakier body sway in both anterior-posterior and medio-lateral directions; increased medio-lateral sway frequency; increased irregularity of body sway pattern in time in both directions; and increased area, variability, velocity, and jerkiness of both rambling and trembling components of the COP displacement in the anterior-posterior direction (p < 0.02). Such changes might be interpreted as compensatory adjustments to the age-related decline of sensory, neural, and motor functions. In conclusion, balance assessment using postural indices from different domains extracted from the COP displacement was able to capture subtle effects of the natural process of aging on the mechanisms of postural control. Our findings suggest the use of such indices as potential markers for postural instability and fall risk in older adults.  相似文献   

3.
To assess if multiple sclerosis patients with proprioceptive impairment are specifically affected during quiet standing with eyes open and how they can develop motor compensatory processes, 56 patients, classified from sensory clinical tests as ataxo-spastic (MS-AS) or only having spasticity (MS-S), were compared to 23 healthy adults matched for age. The postural strategies were assessed from the centre-of-pressure trajectories (CP), measured from a force platform in the eyes open standing condition for a single trial lasting 51.2?s. The vertical projection of the centre of gravity (CGv) and its vertical difference from the CP (CP-CGv) were then estimated through a biomechanical relationship. These two movements permit the characterization of the postural performance and the horizontal acceleration communicated to the CG and from that, the global energy expenditure, respectively. Both MS-AS and MS-S groups demonstrate larger CGv and CP-CGv movements than healthy individuals of the same age. Whilst similar CGv values are noticed in both MS subgroups, suggesting similar postural performances, statistically significant differences are observed for the CP-CGv component. Biomechanically, this feature expresses the necessity for the MS-AS group to develop augmented neuro-muscular means to control their body movements, as compared to the MS-S group. By demonstrating for both groups of patients similar postural performance accompanied by a varying degree of energy expenditure to maintain undisturbed upright stance, this study reveals that MS-AS patients which are affected by proprioceptive loss can compensate for this deficit with more efficient control strategies, when standing still with their eyes open.  相似文献   

4.
Falls among the older population can severely restrict their functional mobility and even cause death. Therefore, it is crucial to understand the mechanisms and conditions that cause falls, for which it is important to develop a predictive model of falls. One critical quantity for postural instability detection and prediction is the instantaneous stability of quiet upright stance based on motion data. However, well-established measures in the field of motor control that quantify overall postural stability using center-of-pressure (COP) or center-of-mass (COM) fluctuations are inadequate predictors of instantaneous stability. For this reason, 2D COP/COM virtual-time-to-contact (VTC) is investigated to detect the postural stability deficits of healthy older people compared to young adults. VTC predicts the temporal safety margin to the functional stability boundary ( =  limits of the region of feasible COP or COM displacement) and, therefore, provides an index of the risk of losing postural stability. The spatial directions with increased instability were also determined using quantities of VTC that have not previously been considered. Further, Lempel-Ziv-Complexity (LZC), a measure suitable for on-line monitoring of stability/instability, was applied to explore the temporal structure or complexity of VTC and the predictability of future postural instability based on previous behavior. These features were examined as a function of age, vision and different load weighting on the legs. The primary findings showed that for old adults the stability boundary was contracted and VTC reduced. Furthermore, the complexity decreased with aging and the direction with highest postural instability also changed in aging compared to the young adults. The findings reveal the sensitivity of the time dependent properties of 2D VTC to the detection of postural instability in aging, availability of visual information and postural stance and potential applicability as a predictive model of postural instability during upright stance.  相似文献   

5.
Sit-to-walk (STW) is a common functional and transitional task which challenges an individual's postural control systems. As aging is associated with an increased risk of falls during transitional movements, we biomechanically investigated the STW movement task in 12 healthy young and 12 healthy elderly individuals. Performance was evaluated utilizing motion analysis and two force plates. The principal finding of this study was the impaired performance of the healthy older adults. The older adults generated significantly less momentum prior to rising (p=0.011) and further delayed (p<0.001) the initiation of gait until standing more upright (p=0.036). The young adults successfully merged the component tasks shortly after seat-off and displayed significantly greater step length (p<0.001), step velocity (p<0.001), and tolerated greater separation of the center of pressure and center of mass at the end single support phase of the initial step (p=0.001). While the young adults fluidly merged the standing and walking task components, the older adults displayed a conservative movement performance during the STW task thereby limiting threats to their postural stability.  相似文献   

6.
Maintenance of human upright stance requires the acquisition and integration of sensory inputs. Conventional measures of sway have had success in identifying age- and some disease-related changes, but remain unable to address the complexities and dynamics associated with postural control. We investigated the effects of vision, surface compliance, age, and gender on the spectral content of center of pressure (COP) time series. Sixteen healthy young (age 18-24) and older participants (age 55-65) performed trials of quiet, upright stance under different vision (eyes open vs. closed) and surface (hard vs. compliant) conditions. Spectral analyses were conducted to describe COP mean normalized power in discretized bands. Effects of the two sensory modalities and age were distinct in the antero-posterior and medio-lateral directions, and a reorganization of spectral content was evident with increasing task difficulty (eyes open vs. closed and hard vs. compliant surface) and among older adults. These results indicate that vision and surface compliance are predominantly associated with responses from musculature associated with antero-posterior and medio-lateral directions of sway, respectively. Finally, distinguishing between the contributions of different afferent systems to the postural control system using the spectral content of sway bi-directionally may help in diagnosing individuals with balance impairments.  相似文献   

7.
The main purpose of this study was to determine which body part is the best position to apply noise at so that balance control can be improved most. Twelve young healthy participants were recruited in this study. Balance control was assessed by center of pressure (COP) measures, which were collected when participants were blindfolded and stood upright quietly on a force platform. Low-level mechanical noise was separately applied at seven body parts during quiet upright stance, including the forehead, neck, shoulder, finger, abdomen, knee, and ankle. Results showed that dependent COP measures as a whole were not improved when noise was at the finger, shoulder, abdomen, knee, and ankle. In contrast, with the application of noise at the forehead and neck, the dependent COP measures as a whole significantly changed. The forehead appeared to be the better position at which noise should be applied, since the ANOVAs revealed that body sway significantly decreased with the application of noise at the forehead. Findings from this study can aid in the development of noise-based intervention strategies aimed at improving balance. A possible intervention solution might be embedding noise-based devices into head belt.  相似文献   

8.
Cerebral palsy (CP) considerably impairs the ability to maintain upright stance. The effects of locomotor training and functional electrical stimulation (FES) on postural control were determined in 27 children aged 6–12 years with severe CP. The severity level of the clinical manifestations of CP was classified as 3 according to the Gross Motor Function Classification System (GMFCS). All patients participated in 15 30-min mechanical therapy sessions using robot-assisted passive stepping. In 12 out of 27 children, the locomotion therapy was accompanied by FES. Stabilometry and plantography tests were performed in 23 healthy age-matched children. Postural control in children with CP differed from the stabilograms of healthy children in a forward shift of the center of pressure (COP) projection; higher values of the COP trajectory area and length, the mean amplitude of the COP oscillations, and the absence of COP response to the eyes closed condition. After treatment, the posturographic characteristics tended to normalize in relation to the values obtained in neurologically intact children. The improvement was observed in 43% of children without FES and in 75% of children in the group with FES. Analysis of plantograms revealed normalization of footprints in children who received FES. Thus, it was demonstrated that FES combined with locomotor training resulted in the improvement in vertical posture control in children with severe CP.  相似文献   

9.
While occupational back-support exoskeletons (BSEs) are considered as potential workplace interventions, BSE use may compromise postural control. Thus, we investigated the effects of passive BSEs on postural balance during quiet upright stance and functional limits of stability. Twenty healthy adults completed trials of quiet upright stance with differing levels of difficulty (bipedal and unipedal stance; each with eyes open and closed), and executed maximal voluntary leans. Trials were done while wearing two different BSEs (SuitX™, Laevo™) and in a control (no-BSE) condition. BSE use significantly increased center-of-pressure (COP) median frequency and mean velocity during bipedal stance. In unipedal stance, using the Laevo™ was associated with a significant improvement in postural balance, especially among males, as indicated by smaller COP displacement and sway area, and a longer time to contact the stability boundary. BSE use may affect postural balance, through translation of the human + BSE center-of-mass, restricted motion, and added supportive torques. Furthermore, larger effects of BSEs on postural balance were evident among males. Future work should further investigate the gender-specificity of BSE effects on postural balance and consider the effects of BSEs on dynamic stability.  相似文献   

10.

Background  

The human body adopts a number of strategies to maintain an upright position. The analysis of the human balance allows for the understanding and identification of such strategies. The displacement of the centre of pressure (COP) is a measure that has been successfully employed in studies regarding the postural control. Most of these investigations are related to the analysis of individuals suffering from neuromuscular disorders. Recent studies have shown that the elderly population is growing very fast in many countries all over the world, and therefore, researches that try to understand changes in this group are required. In this context, this study proposes the analysis of the postural control, measured by the displacement of the COP, in groups of young and elderly adults.  相似文献   

11.

Introduction

Dual-task performance is known to affect postural stability in children. This study focused on the effect of oculomotor tasks like saccadic eye movements on postural stability, studied in a large population of children by recording simultaneously their eye movements and posture.

Materials and Methods

Ninety-five healthy children from 5.8 to 17.6 years old were examined. All children were free of any vestibular, neurological, ophtalmologic and orthoptic abnormalities. Postural control was measured with a force platform TechnoConcept®, and eye movements with video oculography (MobilEBT®). Children performed two oculomotor tasks: fixation of a stable central target and horizontal saccades. We measured the saccade latency and the number of saccades during fixation as well as the surface, length and mean velocity of the center of pressure.

Results

During postural measurement, we observed a correlation between the age on the one hand and a decrease in saccade latency as well as an improvement in the quality of fixation on the other. Postural sway decreases with age and is reduced in the dual task (saccades) in comparison with a simple task of fixation.

Discussion - Conclusion

These results suggest a maturation of neural circuits controlling posture and eye movements during childhood. This study also shows the presence of an interaction between the oculomotor system and the postural system. Engaging in oculomotor tasks results in a reduction of postural sway.  相似文献   

12.
To assess if multiple sclerosis patients with proprioceptive impairment are specifically affected during quiet standing with eyes open and how they can develop motor compensatory processes, 56 patients, classified from sensory clinical tests as ataxo-spastic (MS-AS) or only having spasticity (MS-S), were compared to 23 healthy adults matched for age. The postural strategies were assessed from the centre-of-pressure trajectories (CP), measured from a force platform in the eyes open standing condition for a single trial lasting 51.2 s. The vertical projection of the centre of gravity (CGv) and its vertical difference from the CP (CP-CGv) were then estimated through a biomechanical relationship. These two movements permit the characterization of the postural performance and the horizontal acceleration communicated to the CG and from that, the global energy expenditure, respectively. Both MS-AS and MS-S groups demonstrate larger CGv and CP-CGv movements than healthy individuals of the same age. Whilst similar CGv values are noticed in both MS subgroups, suggesting similar postural performances, statistically significant differences are observed for the CP-CGv component. Biomechanically, this feature expresses the necessity for the MS-AS group to develop augmented neuro-muscular means to control their body movements, as compared to the MS-S group. By demonstrating for both groups of patients similar postural performance accompanied by a varying degree of energy expenditure to maintain undisturbed upright stance, this study reveals that MS-AS patients which are affected by proprioceptive loss can compensate for this deficit with more efficient control strategies, when standing still with their eyes open.  相似文献   

13.
We investigated the relationships between the ability to maintain balance in an upright stance and center-of-pressure (COP) dynamic properties in young adults. Included in this study were 10 healthy male subjects in each of two groups with respect to balance ability. Balance ability was evaluated according to the length of time a subject stood on one leg with his eyes closed. The means and ranges of this one-leg balancing time were 17.9 s (3-43 s) and 118.3 s (103-120 s) for the off-balance and balance groups, respectively. The time-varying displacements of the COP under a subject's feet during quiet two-leg (normal) standing were measured by an instrumented force platform. Each subject was tested in both the eyes-open and eyes-closed conditions. The COP trajectories were analyzed as fractional Brownian motions according to the procedure of 'stabilogram-diffusion analysis', proposed by Collins and De Luca (1993). The extracted parameters were the effective diffusion coefficients (D) for the short-term (less than about 1.0 s) and long-term intervals, respectively, as well as the Hurst exponents (H) for the short-term and long-term intervals, and some critical-point coordinates (i.e., critical mean square displacements and critical time intervals). The off-balance group showed significantly higher values for short-term D, short-term H, and critical mean square displacements than the balance group. No significant differences between the groups were found in the long-term D and H or in the critical time intervals. That is, for the off-balance subjects, an increase in the stochastic activity and positively correlated (persistent) behavior of the postural sway during shorter timescales may cause postural instability. These results suggest that the difference in balance ability for young adults is related to the open-loop (i.e., short-term) control mechanisms but not to the corrective feedback (i.e., long-term) mechanisms used to maintain balance in an upright stance.  相似文献   

14.
Anticipatory postural adjustments (APAs) play an important role in the performance of many activities requiring the maintenance of standing posture. However, little is known about if and how children with cerebral palsy (CP) generate APAs. Two groups of children with CP (hemiplegia and diplegia) and a group of children with typical motor development performed arm flexion and extension movements while standing on a force platform. Electromyographic activity of six trunk and leg muscles and displacement of center of pressure (COP) were recorded. Children with CP were able to generate anticipatory postural adjustments and produce directionally specific APAs and COP displacements similar to those described in adults and typically developing children. However, children with diplegia were unable to generate APAs of the same magnitude as children with typical development and hemiplegia and had higher baseline muscle activity prior to movement. In children with diplegia, COP was posteriorly displaced and peak acceleration was smaller during bilateral extension compared to children with hemiplegia. The outcomes of the study highlight the role of APAs in the control of posture of children with CP and point out the similarities and differences in anticipatory control in children with diplegia and hemiplegia. These differences may foster ideas for treatment strategies to enhance APAs in children with CP.  相似文献   

15.
This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.  相似文献   

16.
How sensory organization for postural control matures in children is not clear at this time. The present study examined, in children aged 7 to 11 and in adults, the postural control modifications in quiet standing when somatosensory inputs from the ankle were disturbed. Since the reweighting of sensory inputs is not mature before 10, we hypothesized that postural stability was more affected in children than in adults when somatosensory inputs were altered and that this postural instability decreased as age increased during childhood. 37 children aged 7 to 11 years and 9 adults participated in the experiments. The postural task was a semi-tandem position with the right foot in front of the left one. Postural performance was measured by means of a force platform. Two experimental conditions were presented to the participants to maintain quiet standing: With or without altered somatosensory inputs (i.e., with or without ankles vibration). Results showed that postural stability--and thus how the reweighting process of the visual/somatosensory inputs matured--increased non-monotonically between 7 years of age and adult age: There was a linear improvement of postural stability from 7 to 10, followed by a more steady behaviour between 10 and 11 and then postural stability increased to reach the adults' level of performance.  相似文献   

17.
Mechanical vibration of tendons induces large postural reactions (PR-VIB) but little is known about how these reactions vary within and between subjects. We investigated the intra- and inter-individual variability of PR-VIB and determined the reliability of center of pressure (COP) measures. Bipodal postural control (eyes closed) of 30 healthy adults were evaluated using a force platform under 02 conditions: bilateral VIB of the tibialis anterior (TA) and Achilles tendons (ACH-T) at 80 Hz. Each condition consisted of 03 trials of 30 s duration (Baseline: 10 s; VIB: 10 s; POST-VIB: 10 s). The Amplitude and Velocity of the COP in the antero-posterior/medio-lateral (AP/ML) directions were recorded and analyzed according to 5 time-windows incremented every 2 s of vibration (i.e. the first 2 s; 4 s; 6 s; 8 s & 10 s), whereas the COP position/AP was monitored every 0.5 s. All postural parameters increased significantly during TA and ACH-T vibration compared to the Baseline. The reliability of the COP measures showed good ICC scores (0.40-0.84) and measurement errors that varied depending on the duration of VIB time-windows. The COP position/AP reveals a lower intra- and inter-subject variability of PR-VIB in the first 2 s of VIB. The metrological characteristics of PR-VIB should be investigated further to guide their future use by clinicians and researchers.  相似文献   

18.
Abstract

Background and aims: Role of the neck and jaw sensory motor system in control of body balance has been established. Tongue is an integral part of jaw sensory motor system and helps in execution of purposeful and precise motor tasks like eating, drinking and speaking. The purpose of this study was to evaluate the possible effects of tongue position on the postural control system.

Materials and method: We compared the mean center of gravity (COG) velocity during quiet standing on an unstable surface with eyes closed during two test conditions: (i) with habitual jaw resting position and (ii) with instructed tongue positioned against the upper incisors. One hundred and sixteen normal healthy male subjects (average age 31.56?±?8.51 years and height 170.86?±?7.26?cm) participated in the study. Their COG velocity (deg/s) was measured using the NeuroCom® Balance Master version 8.5.0 (Clackamas, OR, USA).

Results and conclusions: The results show that COG velocity decreased significantly while tongue was positioned against upper incisors in comparison to the habitual jaw resting position. Our findings suggest that the tongue positioning can modulate postural control mechanisms. Tongue positioning against the upper incisors can enhance the postural stability during upright standing on an unstable surface and in the absence of vision in healthy young adults. Our findings can be of value for evaluation and rehabilitation protocols for postural control dysfunction.  相似文献   

19.

Introduction

Balance deficits are identified as important risk factors for falling in individuals with chronic obstructive pulmonary disease (COPD). However, the specific use of proprioception, which is of primary importance during balance control, has not been studied in individuals with COPD. The objective was to determine the specific proprioceptive control strategy during postural balance in individuals with COPD and healthy controls, and to assess whether this was related to inspiratory muscle weakness.

Methods

Center of pressure displacement was determined in 20 individuals with COPD and 20 age/gender-matched controls during upright stance on an unstable support surface without vision. Ankle and back muscle vibration were applied to evaluate the relative contribution of different proprioceptive signals used in postural control.

Results

Individuals with COPD showed an increased anterior-posterior body sway during upright stance (p = 0.037). Compared to controls, individuals with COPD showed an increased posterior body sway during ankle muscle vibration (p = 0.047), decreased anterior body sway during back muscle vibration (p = 0.025), and increased posterior body sway during simultaneous ankle-muscle vibration (p = 0.002). Individuals with COPD with the weakest inspiratory muscles showed the greatest reliance on ankle muscle input when compared to the stronger individuals with COPD (p = 0.037).

Conclusions

Individuals with COPD, especially those with inspiratory muscle weakness, increased their reliance on ankle muscle proprioceptive signals and decreased their reliance on back muscle proprioceptive signals during balance control, resulting in a decreased postural stability compared to healthy controls. These proprioceptive changes may be due to an impaired postural contribution of the inspiratory muscles to trunk stability. Further research is required to determine whether interventions such as proprioceptive training and inspiratory muscle training improve postural balance and reduce the fall risk in individuals with COPD.  相似文献   

20.
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号