首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Mutation of the p53 tumor suppressor gene is the most common genetic alteration in human cancer, and tumors that express mutant p53 may be more aggressive and have a worse prognosis than p53-null cancers. Mutant p53 enhances tumorigenicity in the absence of a transdominant negative mechanism, and this tumor-promoting activity correlates with its ability to transactivate reporter genes in transient transfection assays. However, the mechanism by which mutant p53 functions in transactivation and its endogenous cellular targets that promote tumorigenicity are unknown. Here we report that (i) mutant p53 can regulate the expression of the endogenous c-myc gene and is a potent activator of the c-myc promoter; (ii) the region of mutant p53 responsiveness in the c-myc gene has been mapped to the 3′ end of exon 1; (iii) the mutant p53 response region is position and orientation dependent and therefore does not function as an enhancer; and (iv) transactivation by mutant p53 requires the C terminus, which is not essential for wild-type p53 transactivation. These data suggest that it may be possible to selectively inhibit mutant p53 gain of function and consequently reduce the tumorigenic potential of cancer cells. A possible mechanism for transactivation of the c-myc gene by mutant p53 is proposed.  相似文献   

8.
9.
Active DNA demethylation plays crucial roles in the regulation of gene expression in both plants and animals. In Arabidopsis thaliana, active DNA demethylation is initiated by the ROS1 subfamily of 5-methylcytosine-specific DNA glycosylases via a base excision repair mechanism. Recently, IDM1 and IDM2 were shown to be required for the recruitment of ROS1 to some of its target loci. However, the mechanism(s) by which IDM1 is targeted to specific genomic loci remains to be determined. Affinity purification of IDM1- and IDM2- associating proteins demonstrated that IDM1 and IDM2 copurify together with two novel components, methyl-CpG-binding domain protein 7 (MBD7) and IDM2-like protein 1 (IDL1). IDL1 encodes an α-crystallin domain protein that shows high sequence similarity with IDM2. MBD7 interacts with IDM2 and IDL1 in vitro and in vivo and they form a protein complex associating with IDM1 in vivo. MBD7 directly binds to the target loci and is required for the H3K18 and H3K23 acetylation in planta. MBD7 dysfunction causes DNA hypermethylation and silencing of reporter genes and a subset of endogenous genes. Our results suggest that a histone acetyltransferase complex functions in active DNA demethylation and in suppression of gene silencing at some loci in Arabidopsis.  相似文献   

10.
11.
Bak is a pro-apoptotic protein widely distributed in different cell types that is associated with the mitochondrial outer membrane, apparently through a C-terminal hydrophobic domain. We used infrared spectroscopy to study the secondary structure of a synthetic peptide (+3HN-188ILNVLVVLGVVLLGQFVVRRFFKS211-COO-) with the same sequence as the C-terminal domain of Bak. The spectrum of this peptide in D2O buffer shows an amide I′ band with a maximum at 1636 cm−1, which clearly indicates the predominance of an extended β-structure in aqueous solvent. However, the peptide incorporated in multilamellar dimyristoylphosphatidylcholine (DMPC) membranes shows a different amide I′ band spectrum, with a maximum at 1658 cm−1, indicating a predominantly α-helical structure induced by its interaction with the membrane. It was observed that through differential scanning calorimetry the transition of the phospholipid model membrane was broadened in the presence of the peptide. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) in fluid DMPC vesicles showed that increasing concentrations of the peptide produced increased polarization values, which is compatible with the peptide being inserted into the membrane. High concentrations of the peptide considerably broaden the phase transition of DMPC multilamellar vesicles, and DPH polarization increased, especially at temperatures above the Tc transition temperature of the pure phospholipid. The addition of peptide destabilized unilamellar vesicles and released encapsulated carboxyfluorescein. These results indicate that this domain is able to insert itself into membranes, where it adopts an α-helical structure and considerably perturbs the physical properties of the membrane.  相似文献   

12.
RPK1 (receptor-like protein kinase 1) localizes to the plasma membrane and functions as a regulator of abscisic acid (ABA) signaling in Arabidopsis. In our current study, we investigated the effect of RPK1 disruption and overproduction upon plant responses to drought stress. Transgenic Arabidopsis overexpressing the RPK1 protein showed increased ABA sensitivity in their root growth and stomatal closure and also displayed less transpirational water loss. In contrast, a mutant lacking RPK1 function, rpk1-1, was found to be resistant to ABA during these processes and showed increased water loss. RPK1 overproduction in these transgenic plants thus increased their tolerance to drought stress. We performed microarray analysis of RPK1 transgenic plants and observed enhanced expression of several stress-responsive genes, such as Cor15a, Cor15b, and rd29A, in addition to H2O2-responsive genes. Consistently, the expression levels of ABA/stress-responsive genes in rpk1-1 had decreased compared with wild type. The results suggest that the overproduction of RPK1 enhances both the ABA and drought stress signaling pathways. Furthermore, the leaves of the rpk1-1 plants exhibit higher sensitivity to oxidative stress upon ABA-pretreatment, whereas transgenic plants overproducing RPK1 manifest increased tolerance to this stress. Our current data suggest therefore that RPK1 overproduction controls reactive oxygen species homeostasis and enhances both water and oxidative stress tolerance in Arabidopsis.  相似文献   

13.
To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources.  相似文献   

14.
Deleted in Liver Cancer 1 (DLC1) is a GTPase-activating protein (GAP) with specificity for RhoA, RhoB, and RhoC that is frequently deleted in various tumor types. By inactivating these small GTPases, DLC1 controls actin cytoskeletal remodeling and biological processes such as cell migration and proliferation. Here we provide evidence that DLC1 binds to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) through a previously unrecognized polybasic region (PBR) adjacent to its RhoGAP domain. Importantly, PI(4,5)P2-containing membranes are shown to stimulate DLC1 GAP activity in vitro. In living cells, a DLC1 mutant lacking an intact PBR inactivated Rho signaling less efficiently and was severely compromised in suppressing cell spreading, directed migration, and proliferation. We therefore propose that PI(4,5)P2 is an important cofactor in DLC1 regulation in vivo and that the PBR is essential for the cellular functions of the protein.  相似文献   

15.
16.
17.
Previous studies have demonstrated that Arabidopsis thaliana BBX32 (AtBBX32) represses light signaling in A. thaliana and that expression of AtBBX32 in soybean increases grain yield in multiple locations and multiyear field trials. The BBX32 protein is a member of the B-box zinc finger family from A. thaliana and contains a single conserved Zn(2+)-binding B-box domain at the N terminus. Although the B-box domain is predicted to be involved in protein-protein interactions, the mechanism of interaction is poorly understood. Here, we provide in vitro and in vivo evidence demonstrating the physical and functional interactions of AtBBX32 with another B-box protein, soybean BBX62 (GmBBX62). Deletion analysis and characterization of the purified B-box domain indicate that the N-terminal B-box region of AtBBX32 interacts with GmBBX62. Computational modeling and site-directed mutagenesis of the AtBBX32 B-box region identified specific residues as critical for mediating the interaction between AtBBX32 and GmBBX62. This study defines the plant B-box as a protein interaction domain and offers novel insight into its role in mediating specific protein-protein interactions between different plant B-box proteins.  相似文献   

18.
19.
20.
端粒酶是真核生物中维持染色体末端DNA完整性的一类特殊逆转录酶,研究拟南芥AtTERT对大肠杆菌生长及非生物胁迫的影响,为深入研究TERT蛋白非端粒功能奠定基础.将拟南芥AtTERT转入大肠杆菌,成功构建pET32a-AtTERT原核表达载体,优化诱导条件,纯化并鉴定GST-AtTERT融合蛋白,运用Western b...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号