首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
p63, known to play a role in development, has more recently also been implicated in cancer progression. Mutations in p63 have been shown to be responsible for several human developmental diseases. Differential splicing of the p63 gene gives rise to p63 isoforms, which can act either as tumor suppressors or as oncogene. In this report, we studied the effects of naturally occurring TAp637 mutants on the regulation of p53/p63 and p63 specific target genes. We observed significant differences among p63 mutants to regulate the p53/p63 and p63 specific target genes. Additionally, we observed a differential effect of p63 mutants on wildtype-p63-mediated induction ofp53/p63 and p63 specific target genes. We also demonstrated that these mutants differentially regulate the binding of wildtype p63 to the promoter of target genes. Furthermore, the effects of these mutants on cell death and survival were consistent with their ability to regulate the downstream targets when compared to wildtype TAp63T. In summary, our data demonstrate that p63 mutants exhibit differential effects on p63 and p53/p63 specific target genes and on the induction of apoptosis, and provide further insight into the function of p63.  相似文献   

4.
5.
The p53-related p63 gene encodes six isoforms with differing N and C termini. TAp63 isoforms possess a transactivation domain at the N terminus and are able to transactivate a set of genes, including some targets downstream of p53. Accumulating evidence indicates that TAp63 plays an important role in regulation of cell proliferation, differentiation, and apoptosis, whereas transactivation-inert deltaNp63 functions to inhibit p63 and other p53 family members. Mutations in the p63 gene that abolish p63 DNA-binding and transactivation activities cause human diseases, including ectrodactyly ectodermal dysplasia and facial clefting (EEC) syndrome. In this study, we show that mutant p63 proteins with a single amino acid substitution found in EEC syndrome are DNA binding deficient, transactivation inert, and highly stable. We demonstrate that TAp63 protein expression is tightly controlled by its specific DNA-binding and transactivation activities and that p63 is degraded in a proteasome-dependent, MDM2-independent pathway. In addition, the N-terminal transactivation domain of p63 is indispensable for its protein degradation. Furthermore, the wild-type TAp63gamma can act in trans to promote degradation of mutant TAp63gamma defective in DNA binding, and the TA domain deletion mutant of TAp63gamma inhibits transactivation activity and stabilizes the wild-type TAp63 protein. Taken together, these data suggest a feedback loop for p63 regulation, analogous to the p53-MDM2 feedback loop.  相似文献   

6.
7.
8.
9.
Post-translational modification of the p53 family members is key to their regulation. Here we report the phosphorylation of TAp63gamma, but not DeltaNp63gamma, by IkappaB kinase beta (IKKbeta). Activation of IKKbeta by gamma radiation or tumor necrosis factor-alpha led to increased TAp63gamma protein levels in cells. IKKbeta, but not its kinase-defective mutant IKKbeta-K44A, led to this observed stabilization of TAp63gamma. This stabilization of TAp63gamma in response to gamma radiation was significantly decreased in the absence of IKKbeta. Phosphorylation of TAp63gamma blocks ubiquitylation and possible degradation of this protein. We postulate that phosphorylation of TAp63gamma by IKKbeta stabilizes the TAp63gamma protein by blocking ubiquitylation-dependent degradation of this protein.  相似文献   

10.
The discovery that the p53 family consists of three members (p53, p63 and p73) in vertebrates and of a single homolog in invertebrates has raised the challenge of understanding the functions of the ancestor and how they have evolved and differentiated within the duplicated genes in vertebrates. Here, we report that the fatty acid synthase (FAS) gene, encoding for a key enzyme involved in the biogenesis of membrane lipids in rapidly proliferating cells, is a conserved target of the p53 family throughout the evolution. We show that CEP-1, the C. elegans p53 homolog, is able to bind the two p53 family responsive elements (REs) identified in the worm fasn-1 gene. Moreover, we demonstrate that fasn-1 expression is modulated by CEP-1 in vivo, by comparing wild-type and CEP-1 knockout worms. In human, luciferase and chromatin immunoprecipitation assays demonstrate that TAp73α and ΔNp63α, but not p53, TAp73β and TAp63α bind the two p53 REs of the human FASN gene. We show that the ectopic expression of TAp73β and ΔNp63α leads to an increase of FASN mRNA levels, while their silencing produces a decrease of FASN expression. Furthermore, we present data showing a correlation between ΔNp63α and FASN expression in cellular proliferation. Of relevant importance is that fasn-1 is the first CEP-1 direct target gene identified so far in C. elegans and our results suggest a new CEP-1 role in cellular proliferation and development, besides the one already described in apoptosis of germ cells. These data confirm the hypothesis that the ancestral functions of the single invertebrate gene may have been spread out among the three vertebrate members, each of them have acquired specific role in cell cycle regulation.  相似文献   

11.
p63足p53家族成员的核转录因子,根据N端及C端的不同,已经发现TAp630α、TAp63β、rap63y、ANp630α、△Np63β、△Np63β、△Np63δ、△Np63δ种亚型。p63的表达受到多种转录因子的调控,其mRNA的稳定性由RNPCI调节,蛋白的稳定性主要由HECT家族成员Itch/AIP4、WWPI调节。p63在上皮细胞分化、组织发育过程中起着关键性作用,因此,p63基因突变可以导致外胚层发育不良的相关疾病,同时,p63在肿瘤的形成和转移的过程中具有重要的调控作用。  相似文献   

12.
13.
14.
15.
p63 is a member of the p53 tumor suppressor family that is critical for epithelial differentiation and also has an important role in cancer progression. Currently, the molecular mechanisms governing regulation of p63 function remain largely unclear. This study identifies a unique E3 ubiquitin ligase for p63, SCF(betaTrCP1). SCF(betaTrCP1) is able to bind p63gamma isoforms, with a higher affinity for the TAp63gamma isoform. Strikingly, co-expression of TAp63gamma and betaTrCP1 leads to the stabilization of TAp63gamma. This stabilization of TAp63gamma leads to up-regulation of p21 at the mRNA and protein level by increased binding of TAp63gamma at the p21 promoter. The up-regulation of p21 causes a subsequent increase in G(1) phase cell cycle arrest. Last, SCF(betaTrCP1) is able to ubiquitylate TAp63gamma, and this ubiquitylation, as well as the increased activity of TAp63gamma, is ablated with the expression of a ubiquitin-deficient mutant of betaTrCP1 (DeltaFbetaTrCP1). Therefore, our study reveals that SCF(betaTrCP1) is an E3 ligase that activates p63 through ubiquitylation.  相似文献   

16.
NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10(-6) M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts.  相似文献   

17.
18.
19.
The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.  相似文献   

20.
Satellite cells/myoblasts account for the majority of muscle regenerative potential in response to injury and muscular adaptation to exercise. Although the ability to influence this process would provide valuable benefits for treating a variety of patients suffering from muscle loss, the regulatory mechanisms of myogenesis are not completely understood. We have tested the hypothesis that transforming growth factor-β-activated kinase 1 (TAK1) is an important regulator of skeletal muscle formation. TAK1 is expressed in proliferating C2C12 myoblasts, and its levels are reduced upon differentiation of myoblasts into myotubes. In vivo, TAK1 is predominantly expressed in developing skeletal muscle of young mice. However, the expression of TAK1 was significantly up-regulated in regenerating skeletal muscle of adult mice. Overexpression of a dominant negative mutant of TAK1 or knockdown of TAK1 inhibited the proliferation and differentiation of C2C12 myoblasts. TAK1 was required for the expression of myogenic regulatory factors in differentiating myoblasts. Genetic ablation of TAK1 also inhibited the MyoD-driven transformation of mouse embryonic fibroblasts into myotubes. Inhibition of TAK1 suppressed the differentiation-associated activation of p38 mitogen-activated protein kinase (MAPK) and Akt kinase. Overexpression of a constitutively active mutant of MAPK kinase 6 (MKK6, an upstream activator of p38 MAPK) but not constitutive active Akt restored the myogenic differentiation in TAK1-deficient mouse embryonic fibroblasts. Insulin growth factor 1-induced myogenic differentiation was also found to involve TAK1. Collectively, our results suggest that TAK1 is an important upstream regulator of skeletal muscle cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号