首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils and non-neutralizing antibodies in mediating enhanced respiratory disease. However, the underlying immunological mechanisms responsible for the enhanced respiratory disease and other disease manifestations associated with FI-RSV vaccine-enhanced disease remain unclear. We demonstrate for the first time that while CD4 T cells mediate all aspects of vaccine-enhanced disease, distinct CD4 T cell subsets orchestrate discrete and specific disease parameters. A Th2-biased immune response, but not eosinophils specifically, was required for airway hyperreactivity and mucus hypersecretion. In contrast, the Th1-associated cytokine TNF-α was necessary to mediate airway obstruction and weight loss. Our data demonstrate that individual disease manifestations associated with FI-RSV vaccine-enhanced disease are mediated by distinct subsets of CD4 T cells.  相似文献   

2.
3.
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.  相似文献   

4.
An EBV-specific cellular immune response is associated with the control of EBV-associated malignancies and lymphoproliferative diseases, some of which have been successfully treated by adoptive T cell therapy. Therefore, many methods have been used to measure EBV-specific cellular immune responses. Previous studies have mainly used autologous EBV-transformed B-lymphoblastoid cell lines (B-LCLs), recombinant viral vectors transfected or peptide pulsed dendritic cells (DCs) as stimulators of CD8+ and CD4+ T lymphocytes. In the present study, we used an interferon-γ (IFN-γ) enzyme-linked immunospot (ELISPOT) assay by using isolated CD8+ and CD4+ T cells stimulated with mRNA-transfected DCs. The frequency of latent membrane protein 1 (LMP1)-specific IFN-γ producing CD4+ T cells was significantly higher than that of LMP2a. The frequency of IFN-γ producing CD4+ T cells was significantly correlated with that of CD8+ T cells in LMP1-specific immune responses (r = 0.7187, Pc < 0.0001). To determine whether there were changes in LMP1- or LMP2a-specific immune responses, subsequent peripheral blood mononuclear cells (PBMCs) samples were analyzed. Significant changes were observed in 5 of the 10 donors examined, and CD4+ T cell responses showed more significant changes than CD8+ T cell responses. CD8+ and CD4+ T cells from EBV-seropositive donors secreted only the Th1 cytokines IFN-γ, TNF-α, and IL-2, while Th2 (IL-4) and Th17 (IL-17a) cytokines were not detected. CD4+ T cells secreted significantly higher cytokine levels than did CD8+ T cells. Analysis of EBV-specific T cell responses using autologous DCs transfected with mRNA might provide a comprehensive tool for monitoring EBV infection and new insights into the pathogenesis of EBV-associated diseases.  相似文献   

5.
Breast feeding reduces the risk of developing severe respiratory syncytial virus (RSV) infections in infants. In addition to maternal antibodies, other immune-modulating factors in human milk contribute to this protection. Specific dietary prebiotic oligosaccharides, similar to oligosaccharides present in human milk, were evaluated in a C57BL/6 mouse RSV infection model. During primary RSV infection, increased numbers of RSV-specific CD4+ T cells producing gamma interferon (IFN-γ) were found in the lungs at days 8 to 10 postinfection in mice receiving diet containing short-chain galactooligosacharides, long-chain fructooligosaccharides, and pectin-derived acidic oligosaccharides (termed scGOS/lcFOS/pAOS). In a Th2-skewed formalin-inactivated (FI)-RSV vaccination model, the prebiotic diet reduced RSV-specific Th2 cytokine (interleukin-4 [IL-4], IL-5, and IL-13)-producing CD4+ T cells in the lung and the magnitude of airway eosinophilia at day 4 and 6 after infection. This was accompanied by a decreased influx of inflammatory dendritic cells (CD11b+/CD11c+) and increased numbers of IFN-γ-producing CD4+ and CD8+ T cells at day 8 after viral challenge. These findings suggest that specific dietary oligosaccharides can influence trafficking and/or effector functions of innate immune, CD4+, and CD8+ T cell subsets in the lungs of RSV-infected mice. In our models, scGOS/lcFOS/pAOS had no effect on weight but increased viral clearance in FI-RSV-vaccinated mice 8 days after infection. The increased systemic Th1 responses potentiated by scGOS/lcFOS/pAOS might contribute to an accelerated Th1/Th2 shift of the neonatal immune system, which might favor protective immunity against viral infections with a high attack rate in early infancy, such as RSV.  相似文献   

6.
Protein subunit vaccines present a compelling new area of research for control of tuberculosis (TB). Based on the interaction between Mycobacterium tuberculosis and its host, five stage-specific antigens of M. tuberculosis that participate in TB pathogenesis—Rv1813, Rv2660c, Ag85B, Rv2623, and HspX—were selected. These antigens were verified to be recognized by T cells from a total of 42 whole blood samples obtained from active TB patients, patients with latent TB infections (LTBIs), and healthy control donors. The multistage polyprotein A1D4 was developed using the selected five antigens as a potentially more effective novel subunit vaccine. The immunogenicity and protective efficacy of A1D4 emulsified in the adjuvant MTO [monophosphoryl lipid A (MPL), trehalose-6,6′-dibehenate (TDB), components of MF59] was compared with Bacillus Calmette-Guerin (BCG) in C57BL/6 mice. Our results demonstrated that A1D4/MTO could provide more significant protection against M. tuberculosis infection than the PBS control or MTO adjuvant alone judging from the A1D4-specific Th1-type immune response; however, its efficacy was inferior to BCG as demonstrated by the bacterial load in the lung and spleen, and by the pathological changes in the lung. Antigen-specific single IL-2-secreting cells and different combinations with IL-2-secreting CD4+ T cells were beneficial and correlated with BCG vaccine-induced protection against TB. Antigen-specific IFN-γ+IL-2+ CD4+ T cells were the only effective biomarker significantly induced by A1D4/MTO. Among all groups, A1D4/MTO immunization also conferred the highest number of antigen-specific single IFN-γ+ and IFN-γ+TNF-α+ CD4+ T cells, which might be related to the antigen load in vivo, and single IFN-γ+ CD8+ T cells by mimicking the immune patterns of LTBIs or curable TB patients. Our strategy seems promising for the development of a TB vaccine based on multistage antigens, and subunit antigen A1D4 suspended in MTO adjuvant warrants preclinical evaluation in animal models of latent infection and may boost BCG vaccination.  相似文献   

7.
CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6 CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6 subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6 cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells.  相似文献   

8.
9.
The antiviral role of CD4+ T cells in virus-induced pathologies of the central nervous system (CNS) has not been explored extensively. Control of neurotropic mouse hepatitis virus (JHMV) requires the collaboration of CD4+ and CD8+ T cells, with CD8+ T cells providing direct perforin and gamma interferon (IFN-γ)-mediated antiviral activity. To distinguish bystander from direct antiviral contributions of CD4+ T cells in virus clearance and pathology, memory CD4+ T cells purified from wild type (wt), perforin-deficient (PKO), and IFN-γ-deficient (GKO) immune donors were transferred to immunodeficient SCID mice prior to CNS challenge. All three donor CD4+ T-cell populations controlled CNS virus replication at 8 days postinfection, indicating IFN-γ- and perforin-independent antiviral function. Recipients of GKO CD4+ T cells succumbed more rapidly to fatal disease than untreated control infected mice. In contrast, wt and PKO donor CD4+ T cells cleared infectious virus to undetectable levels and protected from fatal disease. Recipients of all CD4+ T-cell populations exhibited demyelination. However, it was more severe in wt CD4+ T-cell recipients. These data support a role of CD4+ T cells in virus clearance and demyelination. Despite substantial IFN-γ-independent antiviral activity, IFN-γ was crucial in providing protection from death. IFN-γ reduced neutrophil accumulation and directed macrophages to white matter but did not ameliorate myelin loss.  相似文献   

10.
Immunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg) frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A)-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT) levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6), and number of IFN-γ + CD4+ and IFN-γ + CD8+ T cells in the spleen and liver. In contrast, CD4+CD25+Foxp3+ Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.  相似文献   

11.
Respiratory syncytial virus (RSV) can cause bronchiolitis and viral pneumonia in young children and the elderly. Lack of vaccines and recurrence of RSV infection indicate the difficulty in eliciting protective memory immune responses. Tissue resident memory T cells (TRM) can confer protection from pathogen re-infection and, in human experimental RSV infection, the presence of lung CD8+ TRM cells correlates with a better outcome. However, the requirements for generating and maintaining lung TRM cells during RSV infection are not fully understood. Here, we use mouse models to assess the impact of innate immune response determinants in the generation and subsequent expansion of the TRM cell pool during RSV infection. We show that CD8+ TRM cells expand independently from systemic CD8+ T cells after RSV re-infection. Re-infected MAVS and MyD88/TRIF deficient mice, lacking key components involved in innate immune recognition of RSV and induction of type I interferons (IFN-α/β), display impaired expansion of CD8+ TRM cells and reduction in antigen specific production of granzyme B and IFN-γ. IFN-α treatment of MAVS deficient mice during primary RSV infection restored TRM cell expansion upon re-challenge but failed to recover TRM cell functionality. Our data reveal how innate immunity, including the axis controlling type I IFN induction, instructs and regulates CD8+ TRM cell responses to RSV infection, suggesting possible mechanisms for therapeutic intervention.  相似文献   

12.
Interferon (IFN)-β is a front-line therapy for the treatment of the relapsing-remitting form of multiple sclerosis. However, its immunosuppressive mechanism of function remains incompletely understood. While it has been proposed that IFN-β suppresses the function of inflammatory myelin antigen-reactive T cells by promoting the release of immunomodulatory cytokines such as IL-27 from antigen-presenting cells (APCs), its direct effects on inflammatory CD4+ Th1 cells are less clear. Here, we establish that IFN-β inhibits mouse IFN-γ+ Th1 cell function in the absence of APCs. CD4+ T cells express the type I interferon receptor, and IFN-β can suppress Th1 cell proliferation under APC-free stimulation conditions. IFN-β-treated myelin antigen-specific Th1 cells are impaired in their ability to induce severe experimental autoimmune encephalomyelitis (EAE) upon transfer to lymphocyte-deficient Rag1-/- mice. Polarized Th1 cells downregulate IFN-γ and IL-2, and upregulate the negative regulatory receptor Tim-3, when treated with IFN-β in the absence of APCs. Further, IFN-β treatment of Th1 cells upregulates phosphorylation of Stat1, and downregulates phosphorylation of Stat4. Our data indicate that IFN-γ-producing Th1 cells are directly responsive to IFN-β and point to a novel mechanism of IFN-β-mediated T cell suppression that is independent of APC-derived signals.  相似文献   

13.
In the current study of Mycobacterium tuberculosis (MTB)-specific T and B cells, we found that MTB-specific peptides from early secreted antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) induced the expression of IL-21 predominantly in CD4+ T cells. A fraction of IL-21-expressing CD4+ T cells simultaneously expressed Th1 cytokines but did not secrete Th2 or Th17 cytokines, suggesting that MTB-specific IL-21-expressing CD4+ T cells were different from Th1, Th2 and Th17 subpopulations. The majority of MTB-specific IL-21-expressing CD4+ T cells co-expressed IFN-γ and IL-21+IFN-γ+CD4+ T cells exhibited obviously polyfunctionality. In addition, MTB-specific IL-21-expressing CD4+ T cells displayed a CD45RO+CD62LlowCCR7lowCD40LhighICOShigh phenotype. Bcl-6-expression was significantly higher in IL-21-expressing CD4+ T cells than IL-21-CD4+ T cells. Moreover, IL-12 could up-regulate MTB-specific IL-21 expression, especially the frequency of IL-21+IFN-γ+CD4+ T cells. Taken together, our results demonstrated that MTB-specific IL-21+IFN-γ+CD4+ T cells from local sites of tuberculosis (TB) infection could be enhanced by IL-12, which have the features of both Tfh and Th1 cells and may have an important role in local immune responses against TB infection.  相似文献   

14.
Coxiella burnetii is a Gram-negative bacterium that causes Q fever in humans. In the present study, 131 candidate peptides were selected from the major immunodominant proteins (MIPs) of C. burnetii due to their high-affinity binding capacity for the MHC class II molecule H2 I-Ab based on bioinformatic analyses. Twenty-two of the candidate peptides with distinct MIP epitopes were well recognized by the IFN-γ recall responses of CD4+ T cells from mice immunized with parental proteins in an ELISPOT assay. In addition, 7 of the 22 peptides could efficiently induce CD4+ T cells from mice immunized with C. burnetii to rapidly proliferate and significantly increase IFN-γ production. Significantly higher levels of IL-2, IL-12p70, IFN-γ, and TNF-α were also detected in serum from mice immunized with a pool of the 7 peptides. Immunization with the pool of 7 peptides, but not the individual peptides, conferred a significant protection against C. burnetii infection in mice, suggesting that these Th1 peptides could work together to efficiently activate CD4+ T cells to produce the Th1-type immune response against C. burnetii infection. These observations could contribute to the rational design of molecular vaccines for Q fever.  相似文献   

15.
Human γδ T cells augment host defense against tumors and infections, and might have a therapeutic potential in immunotherapy. However, mechanism of γδ T cell proliferation is unclear, and therefore it is difficult to prepare sufficient numbers of γδ T cells for clinical immunotherapy. Recently, natural killer (NK)-like CD56brightCD11c+ cells were shown to promote the proliferation of γδ T cells in an IL-18-dependent manner. In this study, we demonstrated that the NK-like CD56brightCD11c+ cells could directly interact with γδ T cells to promote their sustained expansion, while conventional dendritic cells (DCs), IFN-α-induced DCs, plasmacytoid DCs or monocytes did not. We also examined the cellular mechanism underlying the regulation of CD56brightCD11c+ cells. CD14+ monocytes pre-incubated with IL-2/IL-18 formed intensive interactions with CD56intCD11c+ cells to promote their differentiation to CD56brightCD11c+ cells with helper function. The development of CD56brightCD11c+ cells was suppressed in an IFN-α dependent manner. These results indicate that CD14+ monocytes pretreated with IL-2/IL-18, but neither DCs nor monocytes, play a determining role on the development and proliferation of CD56brightCD11c+ cells, which in turn modulate the expansion of γδ T cells. CD56brightCD11c+ NK-like cells may be a novel target for immunotherapy utilizing γδ T cells, by overcoming the limitation of γδ T cells proliferation.  相似文献   

16.
Mycobacterium bovis bacille Calmette-Guérin (BCG) is the most widely used live attenuated vaccine. However, the correlates of protection and waning of its immunity against tuberculosis is poorly understood. In this study, we correlated the longitudinal changes in the magnitude and functional quality of CD4+ and CD8+ T-cell response over a period of two years after mucosal or parenteral BCG vaccination with the strength of protection against Mycobacterium tuberculosis in mice. The BCG vaccination-induced CD4+ and CD8+ T cells exhibited comparable response kinetics but distinct functional attributes in-terms of IFN-γ, IL-2 and TNF-α co-production and CD62L memory marker expression. Despite a near life-long BCG persistence and the induction of enduring CD4+ T-cell responses characterized by IFN-γ and/or TNF-α production with comparable protection, the protective efficacy waned regardless of the route of vaccination. The progressive decline in the multifactorial functional abilities of CD4+ and CD8+ T cells in-terms of type-1 cytokine production, proliferation and cytolytic potential corresponded with the waning of protection against M. tuberculosis infection. In addition, simultaneous increase in the dysfunctional and terminally-differentiated T cells expressing CTLA-4, KLRG-1 and IL-10 during the contraction phase of BCG-induced response coincided with the loss of protection. Our results question the empirical development of BCG-booster vaccines and emphasize the pursuit of strategies that maintain superior T-cell functional capacity. Furthermore, our results underscore the importance of understanding the comprehensive functional dynamics of antigen-specific T-cell responses in addition to cytokine polyfunctionality in BCG-vaccinated hosts while optimizing novel vaccination strategies against tuberculosis.  相似文献   

17.
Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47phox−/− mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47phox−/− bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1β) release by p47phox−/− macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4+T cells and tissue infiltration of immune cells in T. cruzi infected p47phox−/− mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8+T cells was severely compromised in p47phox−/− mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8+T cell response with type 1 (IFN-γ+TNF-α>IL-4+IL-10), cytolytic effector (CD8+CD107a+IFN-γ+) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8+T cell response. In the event of NOX2 deficiency, a compromised CD8+T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.  相似文献   

18.
We characterized the immune responses elicited by a DNA-prime/MVA-boost vaccine (TcVac3) constituted of antigenic candidates (TcG2 and TcG4), shown to be recognized by B and T cell responses in Trypanosoma cruzi (Tc) infected multiple hosts. C57BL/6 mice immunized with TcVac3 elicited a strong antigen-specific, high-avidity, trypanolytic antibody response (IgG2b>IgG1); and a robust antigen- and Tc-specific CD8+T cell response with type-1 cytokine (IFN-γ+TNF-α>IL-4+IL-10) and cytolytic effector (CD8+CD107a+IFN-γ+Perforin+) phenotype. The vaccine-induced effector T cells significantly expanded upon challenge infection and provided >92% control of T. cruzi. Co-delivery of IL-12 and GMCSF cytokine adjuvants didn’t enhance the TcVac3-induced resistance to T. cruzi. In chronic phase, vaccinated/infected mice exhibited a significant decline (up to 70%) in IFN-γ+CD8+T cells, a predominance of immunoregulatory IL-10+/CD4+T and IL10+/CD8+T cells, and presented undetectable tissue parasitism, inflammatory infiltrate, and fibrosis in vaccinated/infected mice. In comparison, control mice responded to challenge infection by a low antibody response, mixed cytokine profile, and consistent activation of pro-inflammatory CD8+T cells associated with parasite persistence and pathologic damage in the heart. We conclude that TcVac3 elicited type-1 effector T cell immunity that effectively controlled T. cruzi infection, and subsequently, predominance of anti-inflammatory responses prevented chronic inflammation and myocarditis in chagasic mice.  相似文献   

19.
The prevalence and severity of bronchial asthma are higher in females than in males after puberty. Although antigen-specific CD8+ T cells play an important role in the development of asthma through their suppressive effect on cytokine production, the contribution of CD8+ T cells to sex differences in asthmatic responses remains unclear. In the present study, we investigated the sex-specific effect of CD8+ T cells in the suppression of asthma using an ovalbumin mouse model of asthma. The number of inflammatory cells in bronchoalveolar lavage (BAL) fluid, lung type 2 T-helper cytokine levels, and interleukin-4 (IL-4) production by bronchial lymph node cells were significantly higher in female wild-type (WT) mice compared with male mice, whereas no such sex differences were observed between male and female cd8α-disrupted mice. The adaptive transfer of male, but not female, CD8+ T cells reduced the number of inflammatory cells in the recovered BAL fluid of male recipient mice, while no such sex difference in the suppressive activity of CD8+ T cells was observed in female recipient mice. Male CD8+ T cells produced higher levels of IFN-γ than female CD8+ T cells did, and this trend was associated with reduced IL-4 production by male, but not female, CD4+ T cells. Interestingly, IFN-γ receptor expression on CD4+ T cells was significantly lower in female mice than in male mice. These results suggest that female-dominant asthmatic responses are orchestrated by the reduced production of IFN-γ by CD8+ T cells and the lower expression of IFN-γ receptor on CD4+ T cells in females compared with males.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号