首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope with social stressors, but at the expense of plasma derived omega-3 fatty acids.  相似文献   

2.
3.
Supplementation of linoleate or linolenate in a culture medium caused abnormal morphogenesis in an unsaturated fatty acid auxotroph of Escherichia coli K-12.  相似文献   

4.
Formation of episodic memories (i.e. remembered experiences) requires a process called consolidation which involves communication between the neocortex and hippocampus. However, the neuromodulatory mechanisms underlying this neocortico-hippocampal communication are poorly understood. Here, we examined the involvement of dopamine D1 receptors (D1R) and D2 receptors (D2R) mediated signaling on memory consolidation using the Novel Object Recognition (NOR) test. We conducted the tests in male Hartley guinea pigs and cognitive behaviors were assessed in customized Phenotyper home cages utilizing Ethovision XT software from Noldus enabled for the 3-point detection system (nose, center of the body, and rear). We found that acute intraperitoneal injections of either 0.25 mg/kg SCH23390 to block D1Rs or 1.0 mg/kg sulpiride to block D2Rs soon after acquisition (which involved familiarization to two similar objects) attenuated subsequent discrimination for novel objects when tested after 5-hours in the NOR test. By contrast guinea pigs treated with saline showed robust discrimination for novel objects indicating normal operational processes undergirding memory consolidation. The data suggests that involvement of dopaminergic signaling is a key post-acquisition factor in modulating memory consolidation in guinea pigs.  相似文献   

5.
不饱和脂肪酸对人脂肪间充质干细胞生物学特性的影响   总被引:1,自引:0,他引:1  
探讨不饱和脂肪酸对人脂肪间充质干细胞(adipose-derived stem cells,ADSCs)的形态、增殖、免疫表型及分化潜能的影响.采用0.15%Ⅷ型胶原酶消化法从皮下脂肪组织中分离获得ADSCs,使用添加了油酸或亚麻酸的培养基对ADSCs进行传代培养,倒置显微镜下观察细胞形态,计数法绘制细胞生长曲线,流式...  相似文献   

6.
7.
The extent of development of respiratory function induced by aeration of an anaerobically grown unsaturated fatty acid auxotroph of Saccharomyces cerevisiae is determined by the availability, endogenous or externally supplied, of unsaturated fatty acid. The synthesis of mitochondrial and cytoplasmic enzymes during aeration appears to have a similar basis of regulation by available unsaturated fatty acid. Levels of unsaturated fatty acid that permit the synthesis of mitochondrial enzymes also result in a substantial stimulation of cellular protein synthesis.  相似文献   

8.
植物不饱和脂肪酸的生物合成及调控   总被引:1,自引:0,他引:1  
不饱和脂肪酸是植物细胞中的一类重要代谢物质,是组成细胞膜的主要成分,对调节细胞的生理功能起着重要作用。不饱和脂肪酸也是人类必须的一类营养物质,对健康发挥着重要作用。因此,研究植物不饱和脂肪酸的合成和调控机制具有着重要的理论和现实意义。不饱和脂肪酸的合成主要发生在质体和内质网,由一系列编码基因控制,并受到外在环境胁迫及发育的调控。本研究综述了近年来不饱和脂肪酸合成和调控机制相关的一些研究进展,解析了不饱和脂肪酸合成的一些关键基因,以期为将来利用相关基因进行种质创新,从而实现改良食用油品质或提升植物的抗性育种提供思路和实践。  相似文献   

9.
Epidemiological studies have consistently found that hypertension is associated with poor cognitive performance. We hypothesize that a putative causal mechanism underlying this association is due to genetic loci affecting both blood pressure and cognition. Consistent with this notion, we reported several blood pressure (BP) quantitative trait loci (QTLs) that co-localized with navigational performance (Nav)-QTLs influencing spatial learning and memory in Dahl rats. The present study investigates a chromosome 2 region harboring BP-f4 and Nav-8 QTLs. We developed two congenic strains, S.R2A and S.R2B introgressing Dahl R-chromosome 2 segments into Dahl S chromosome 2 region spanning BP-f4 and Nav-8 QTLs. Radiotelemetric blood pressure analysis identified only S.R2A congenic rats with lower systolic blood pressure (females: −26.0 mmHg, P = 0.003; males: −30.9 mmHg, P<1×10−5), diastolic blood pressure (females: −21.2 mmHg, P = 0.01; males: −25.7 mmHg, P<1×10−5), and mean arterial pressure (females: −23.9 mmHg, P = 0.004; males: −28.0 mmHg, P<1×10−5) compared with corresponding Dahl S controls, confirming the presence of BP-f4 QTL on rat chromosome 2. The S.R2B congenic segment did not affect blood pressure. Testing of S.R2A, S.R2B, and Dahl S male rats in the Morris water maze (MWM) task revealed significantly decreased spatial navigation performance in S.R2A male congenic rats when compared with Dahl S male controls (P<0.05). The S.R2B congenic segment did not affect performance of the MWM task in males. The S.R2A female rats did not differ in spatial navigation when compared with Dahl S female controls, indicating that the Nav-8 effect on spatial navigation is male-specific. Our results suggest the existence of a single QTL on chromosome 2 176.6–179.9 Mbp region which affects blood pressure in both males and females and cognition solely in males.  相似文献   

10.
Eubacterium lentum (33 strains) isomerized the 12-cis double bond of C18 fatty acids with cis double bonds at C-9 and C-12 into an 11-trans double bond before reduction of the 9-cis double bond. The 14-cis double bond of homo-γ-linolenic acid was isomerized by 29 strains into a 13-trans double bond. The same strains isomerized the 14-cis double bond of arachidonic acid into a 13-trans double bond and then isomerized the 8-cis double bond into a 7-trans double bond; the 13-cis double bond of 10-cis, 13-cis-nonadecadienoic acid was isomerized into a 12-trans double bond. None of these isomerization products was further reduced. Studies with resting cells showed optimal isomerization velocity at a linoleic acid concentration of 37.5 μM; higher concentrations were inhibitory. The pH optimum for isomerization was 7.5 to 8.5. The isomerase was inhibited by the sulfhydryl reagents iodoacetamide, bromoacetate, and N-ethylmaleimide and by the chelators EDTA and 1,10-phenanthroline.  相似文献   

11.
《Free radical research》2013,47(1):161-166
We have previously shown that unsaturated fatty acids (UFA) facilitate electron transfer between iron centers such as ferrous iron and ferricytochrome C. Extending this concept to a more physiologic model of fatty acids associated with proteins, we find that electron transfer is also enhanced in this model. While investigating whether free superoxide was involved in this electron transfer, we discovered that superoxide dismutase (SOD) enchanced the electron transfer. While the mechanism of electron transfer is unknown, the above findings are consistent with UFA and SOD participating in membrane redox systems.  相似文献   

12.
13.
Conversion of Unsaturated Fatty Acids by Bacteria Isolated from Compost   总被引:1,自引:0,他引:1  
A compost mixture amended with soybean oil was enriched in microorganisms that transformed unsaturated fatty acids (UFAs). When oleic acid or 10-ketostearic acid was the selective fatty acid, Sphingobacterium thalpophilum (NRRL B-23206, NRRL B-23208, NRRL B-23209, NRRL B-23210, NRRL B-23211, NRRL B-23212), Acinetobacter spp. (NRRL B-23207, NRRL B-23213), and Enterobacter cloacae (NRRL B-23264, NRRL B-23265, NRRL B-23266) represented isolates that produced either hydroxystearic acid, ketostearic acid, or incomplete decarboxylations. When ricinoleic (12-hydroxy-9-octadecenoic) acid was the selective UFA, Enterobacter cloacae (NRRL B-23257, NRRL B-23267) and Escherichia sp. (NRRL B-23259) produced 12-C and 14-C homologous compounds, and Pseudomonas aeruginosa (NRRL B-23256, NRRL B-23260) converted ricinoleate to a trihydroxyoctadecenoate product. Also, various Enterobacter, Pseudomonas, and Serratia spp. appeared to decarboxylate linoleate substrate incompletely. These saprophytic, compost bacteria were aerobic or facultative anaerobic Gram-negative and decomposed UFAs through decarboxylation, hydroxylation, and hydroperoxidation mechanisms. Received: 3 November 1998 / Accepted: 30 November 1998  相似文献   

14.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

15.
Ma YY  Yu P  Guo CY  Cui CL 《Neurochemical research》2011,36(3):383-391
Drug addiction, as well as learning and memory, share common mechanisms in terms of neural circuits and intracellular signaling pathways. In the present study, the role of N-methyl-D-aspartate (NMDA) receptors, particularly those containing NR2B subunits, in morphine-induced conditioned place preference (CPP) and Morris water maze (MWM) learning and memory task was investigated. CPP was used as a paradigm for assessing the rewarding effect of morphine, and MWM was used to measure spatial learning and memory in male Sprague–Dawley rats. We found that ifenprodil, an antagonist highly selective for NR2B-containing NMDA receptors, dose-dependently blocked the development, maintenance and reinstatement of morphine-induced CPP, without evident impairment of the acquisition and retrieval of spatial memory in the MWM task. However, the consolidation of spatial memory was disrupted by a high dose (10 mg/kg) of ifenprodil. These results clearly demonstrate that NR2B-containing NMDA receptors are actively involved in addiction memory induced by morphine conditioning, but not in the acquisition and retrieval of spatial learning and memory. In conclusion, NR2B-containing NMDA receptors can be considered potential targets for the treatment of opiate addiction.  相似文献   

16.
目的研究豚鼠高脂饮食后高密度脂蛋白代谢的特点,并与大鼠进行比较。方法将豚鼠和大鼠分别随机分为正常组(NC)和高脂组(HF),正常组均给予普通饲料,高脂组给予高脂饲料诱导10周后,测定血清LDL-C、HDL-C水平,HDL3/HDL2比值和LCAT、CETP的表达;采用real-time RT-PCR方法检测肝脏SR-BI表达的变化。结果与正常组相比,豚鼠高脂组血清HDL-C水平显著升高,高密度脂蛋白亚型HDL3/HDL2的比值升高,血清CETP表达均显著增加,血清LCAT表达下降,肝脏SR-BI mRNA表达水平是正常组的2.27倍。而相同高脂饲料条件下,大鼠的上述指标均无明显变化。结论豚鼠摄入高脂饮食后HDL代谢与大鼠有所不同,主要表现为血清HDL-C升高,肝脏SR-BI受体表达增加,高密度脂蛋白亚型组分发生变化,大颗粒HDL2含量相对减少,小颗粒HDL3堆积,其机制与血清CETP、LCAT的变化密切相关。  相似文献   

17.
为探讨沙棘种子油高积累碳十八不饱和脂肪酸的多基因协同作用机制,以近缘低油沙棘品系‘绥棘1号’和高油品系‘新俄3号’6个不同发育期的种子为材料,利用气相色谱飞行时间质谱法测定种子油脂肪酸组份,采用qRT-PCR方法分析不饱和脂肪酸合成积累相关基因KAR、FATB、Δ9 D、KASⅡ、SAD、FAD2、FAD3、FAD7和FAD8的表达模式,验证多基因表达对碳十八不饱和脂肪酸积累的影响。结果表明:(1)‘绥棘1号’和‘新俄3号’种子油均高积累碳十八不饱和脂肪酸,分别占总脂肪酸的87.71%和88.68%;种子发育期间,油酸相对含量一直呈上升趋势,亚油酸相对含量短时下降后上升趋稳,而亚麻酸相对含量则呈先上升后下降趋稳。(2)FATB基因下调表达协同Δ9 D基因低表达,使C16∶0-ACP转化为棕榈酸和棕榈油酸的代谢减弱,而KAR和KASⅡ基因的相对上调表达,促进了硬脂酸合成,为碳十八不饱和脂肪酸的合成积累了较多前体。(3)SAD基因的持续高表达催化硬脂酸去饱和为油酸,且持续上升的SAD/FATB基因表达比直接提高了脂肪酸的去饱和速率;FAD2、FAD3、FAD7和FAD8基因在亚油酸和亚麻酸快速合成期间同时出现明显的表达量峰值,进而促进油酸逐步去饱和为亚油酸和亚麻酸。研究认为,沙棘种子油高积累碳十八不饱和脂肪酸源于FATB和Δ9 D基因的低表达及KAR、KASⅡ、SAD、FAD2、FAD3、FAD7和FAD8基因的协同高表达,本研究结果为进一步理解种子油中碳十八不饱和脂肪酸的合成积累提供了理论依据,对改良植物油脂的不同脂肪酸比具有重要意义。  相似文献   

18.
采用梯度离心和放射性同位素等方法从鼠脑中分离得到髓磷脂、突触囊、轻突触体、重突触体、线粒体6个亚细胞组分。分别测定了各亚细胞中硒-75、谷胱甘肽过氧化物酶和不饱和脂肪酸的含量,结果表明这些成分在鼠脑亚细胞中的分布呈现明显的相关性,同时首次在突触囊、线粒体和微粒体中检测到三种不同的谷胱甘肽过氧化物酶的活性峰,其中之一可能是红细胞谷胱甘肽过氧化物酶(EC1.11.1.9).还就机体的自我保护机制和硒在脑组织中的重要作用进行了讨论。  相似文献   

19.
Anaerobic long-chain fatty acid (LCFA)-degrading bacteria were identified by combining selective enrichment studies with molecular approaches. Two distinct enrichment cultures growing on unsaturated and saturated LCFAs were obtained by successive transfers in medium containing oleate and palmitate, respectively, as the sole carbon and energy sources. Changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE) profiling of PCR-amplified 16S rRNA gene fragments. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in oleate and palmitate enrichment cultures clustered with fatty acid-oxidizing bacteria within Syntrophomonadaceae and Syntrophobacteraceae families. A low methane yield, corresponding to 9 to 18% of the theoretical value, was observed in the oleate enrichment, and acetate, produced according to the expected stoichiometry, was not further converted to methane. In the palmitate enrichment culture, the acetate produced was completely mineralized and a methane yield of 48 to 70% was achieved from palmitate degradation. Furthermore, the oleate enrichment culture was able to use palmitate without detectable changes in the DGGE profile. However, the palmitate-specialized consortia degraded oleate only after a lag phase of 3 months, after which the DGGE profile had changed. Two predominant bands appeared, and sequence analysis showed affiliation with the Syntrophomonas genus. These bands were also present in the oleate enrichment culture, suggesting that these bacteria are directly involved in oleate degradation, emphasizing possible differences between the degradation of unsaturated and saturated LCFAs.  相似文献   

20.
Lipids can be anaerobically digested to methane, but methanogens are often considered to be highly sensitive to the long-chain fatty acids (LCFA) deriving from lipids hydrolysis. In this study, the effect of unsaturated (oleate [C18:1]) and saturated (stearate [C18:0] and palmitate [C16:0]) LCFA toward methanogenic archaea was studied in batch enrichments and in pure cultures. Overall, oleate had a more stringent effect on methanogens than saturated LCFA, and the degree of tolerance to LCFA was different among distinct species of methanogens. Methanobacterium formicicum was able to grow in both oleate- and palmitate-degrading enrichments (OM and PM cultures, respectively), whereas Methanospirillum hungatei only survived in a PM culture. The two acetoclastic methanogens tested, Methanosarcina mazei and Methanosaeta concilii, could be detected in both enrichment cultures, with better survival in PM cultures than in OM cultures. Viability tests using live/dead staining further confirmed that exponential growth-phase cultures of M. hungatei are more sensitive to oleate than are M. formicicum cultures; exposure to 0.5 mM oleate damaged 99% ± 1% of the cell membranes of M. hungatei and 53% ± 10% of the cell membranes of M. formicicum. In terms of methanogenic activity, M. hungatei was inhibited for 50% by 0.3, 0.4, and 1 mM oleate, stearate, and palmitate, respectively. M. formicicum was more resilient, since 1 mM oleate and >4 mM stearate or palmitate was needed to cause 50% inhibition on methanogenic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号