首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterohemorrhagic Escherichia coli (EHEC) is a significant zoonotic pathogen causing severe disease associated with watery and bloody diarrhea, hemorrhagic colitis, and the hemolytic-uremic syndrome (HUS) in humans. Infections are frequently associated with contact with EHEC-contaminated ruminant feces. Both natural and experimental infection of cattle induces serum antibodies against the LEE-encoded proteins intimin, EspA, EspB, and Tir and the Shiga toxins Stx1 and Stx2, although the latter are poorly immunogenic in cattle. We determined whether antibodies and/or the kinetics of antibody responses against intimin, Tir, EspA, and/or EspB can be used for monitoring EHEC infections in beef cattle herds in order to reduce carcass contamination at slaughter. We examined the presence of serum antibodies against recombinant O157:H7 E. coli intimin EspA, EspB, and Tir during a cross-sectional study on 12 cattle farms and during a longitudinal time course study on two EHEC-positive cattle farms. We searched for a possible correlation between intimin, Tir, EspA, and/or EspB antibodies and fecal excretion of EHEC O157, O145, O111, O103, or O26 seropathotypes. The results indicated that serum antibody responses to EspB and EspA might be useful for first-line screening at the herd level for EHEC O157, O26, and most likely also for EHEC O103 infections. However, antibody responses against EspB are of less use for monitoring individual animals, since some EHEC-shedding animals did not show antibody responses and since serum antibody responses against EspB could persist for several months even when shedding had ceased.  相似文献   

2.
Enterohemorrhagic Escherichia coli (EHEC) are important human pathogens, causing hemorrhagic colitis and hemolytic uraemic syndrome in humans. E. coli O157:H7 is the most common serotype associated with EHEC infections worldwide, although other non-O157 serotypes cause life-threatening infections. Cattle are a main reservoir of EHEC and intervention strategies aimed at limiting EHEC excretion from cattle are predicted to lower the risk of human infection. We have previously shown that immunization of calves with recombinant versions of the type III secretion system (T3SS)-associated proteins EspA, intimin and Tir from EHEC O157:H7 significantly reduced shedding of EHEC O157 from experimentally-colonized calves, and that protection could be augmented by the addition of H7 flagellin to the vaccine formulation. The main aim of the present study was to optimize our current EHEC O157 subunit vaccine formulations by identifying the key combinations of these antigens required for protection. A secondary aim was to determine if vaccine-induced antibody responses exhibited cross-reactive potential with antigens from other EHEC serotypes. Immunization with EspA, intimin and Tir resulted in a reduction in mean EHEC O157 shedding following challenge, but not the mean proportion of calves colonized. Removal of Tir resulted in more prolonged shedding compared with all other groups, whereas replacement of Tir with H7 flagellin resulted in the highest levels of protection, both in terms of reducing both mean EHEC O157 shedding and the proportion of colonized calves. Immunization of calves with recombinant EHEC O157 EspA, intimin and Tir resulted in the generation of antibodies capable of cross-reacting with antigens from non-O157 EHEC serotypes, suggesting that immunization with these antigens may provide a degree of cross-protection against other EHEC serotypes. Further studies are now required to test the efficacy of these vaccines in the field, and to formally test the cross-protective potential of the vaccines against other non-O157 EHEC.  相似文献   

3.
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 uses a specialized protein translocation apparatus, the type III secretion system (TTSS), to deliver bacterial effector proteins into host cells. These effectors interfere with host cytoskeletal pathways and signalling cascades to facilitate bacterial survival and replication and promote disease. The genes encoding the TTSS and all known type III secreted effectors in EHEC are localized in a single pathogenicity island on the bacterial chromosome known as the locus for enterocyte effacement (LEE). In this study, we performed a proteomic analysis of proteins secreted by the LEE-encoded TTSS of EHEC. In addition to known LEE-encoded type III secreted proteins, such as EspA, EspB and Tir, a novel protein, NleA (non-LEE-encoded effector A), was identified. NleA is encoded in a prophage-associated pathogenicity island within the EHEC genome, distinct from the LEE. The LEE-encoded TTSS directs translocation of NleA into host cells, where it localizes to the Golgi apparatus. In a panel of strains examined by Southern blot and database analyses, nleA was found to be present in all other LEE-containing pathogens examined, including enteropathogenic E. coli and Citrobacter rodentium, and was absent from non-pathogenic strains of E. coli and non-LEE-containing pathogens. NleA was determined to play a key role in virulence of C. rodentium in a mouse infection model.  相似文献   

4.
目的:通过DNA重组技术表达肠出血性大肠杆菌(EHEC)0157:H7的EspA和EspB蛋白,并分析它们的免疫保护性。方法:采用PCR技术从EHEC0157:H7基因组中扩增espA和espB基因,连接至pET-22b(4-)载体上,转化至宿主细胞大肠杆菌BL21(DE3),经IPTG诱导表达,用亲和层析纯化目的蛋白,SDS-PAGE测定其相对分子质量,免疫小鼠分析其免疫保护性。结果:重组espA和espB基因片段的测序结果与GenBank中的相应基因序列完全一致,一致性均为100%;得到了纯度为95%以上的重组EspA和EspB蛋白,免疫小鼠所得到的抗体效价均为10^6。结论:重组EspA和EspB蛋白获得了可溶性表达,表达的蛋白具有良好的免疫保护性,为进一步制备疫苗奠定了基础。  相似文献   

5.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infections cause serious public health problems worldwide. The translocation intimin receptor (Tir) is responsible for adhesion and attaching and effacing lesions. In the current study, we used a mitomycin-treated mouse model to evaluate the efficacy of subcutaneous vs intranasal administration of the recombinant Tir as vaccine. Following immunization, mice were infected with E. coli O157:H7 and faces were monitored for shedding. Mice immunized intrasally with purified Tir proteins produced higher IgG and IgA titers in serum and feces, resulting in significant reductions in fecal shedding of EHEC O157 and higher a survival rate (92.9%), compared with subcutaneous or control immunizations. These results demonstrate the potential for the use of Tir proteins in mucosal vaccine formulations to prevent colonization and shedding of E. coli O157:H7. Therefore, purified Tir protects mice against EHEC challenge after intranasal immunization and is worth further clinical development as a vaccine candidate.  相似文献   

6.
Using a porcine ileal in vitro organ culture model, we have demonstrated that egg yolk-derived antibodies specific for the attaching and effacing Escherichia coli (AEEC) virulence factors intimin and translocated intimin receptor (Tir), but not those specific for the AEEC-secreted proteins EspA, EspB and EspD, significantly reduced the bacterial adherence of the porcine enteropathogenic E. coli strain ECL1001, formerly 86-1390. Moreover, antibodies specific for intimin and Tir also significantly reduced bacterial adherence of heterologous AEEC strains, including human, bovine and canine enteropathogenic E. coli strains, as well as of O157:H7 Shiga toxin-producing E. coli strains in this model. In addition, we demonstrated that the oral administration of these anti-intimin antibodies significantly reduced the extent of attaching and effacing lesions found in the small intestine of weaned pigs challenged with the porcine enteropathogenic E. coli strain ECL1001. Overall, our results underline the potential use of specific egg yolk-derived antibodies as a novel approach for the prevention of AEEC infections.  相似文献   

7.
Infections due to Shiga toxin-producing Escherichia coli (STEC) are responsible for severe diarrheal diseases in humans, and these bacteria have recently emerged as a leading cause of renal failure and encephalitis in children and the aged. In this study, we examined the environment-dependent production of proteins secreted from a strain of STEC O26:H11 by trichloroacetic acid precipitation, SDS-PAGE, Western blotting and N-terminal amino acid sequence analysis. Growth of bacteria in essential minimum medium (M9) led to the detection of secreted proteins of 104, 80,40, 37 and 25 kDa (P104, P80, P40, P37 and P25, respectively). When grown in serum-free MEM, only P104, P40, P37 and P25 were observed in supernatant fluids. Growth of the bacteria in Luria-Bertani broth (LB) enhanced the expression of P104, but the productions of the other proteins were remarkably reduced. CO2 increased the secretion of P80 and P37, but reduced the production of P104. N-terminal amino acid sequencing revealed that P104 was EspP of STEC, which was homologous to EspC of enteropathogenic Escherichia coli (EPEC), and both proteins belong to a subclass of the IgA protease family. P80, which was identified as EspE of STEC, was homologous to Tir of EPEC. P40, P37 and P25 were found to be highly homologous to the similarly sized EspD, EspB and EspA proteins, previously detected in culture supernatants of EPEC. Those proteins are thought to be STEC virulence factors. Sera were obtained from two patients, one with colitis and another with hemolytic uremic syndrome (HUS), caused by STEC O157:H7, to study immune response to secreted proteins. Our results suggested that Tir caused immune response following STEC disease.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for 'attaching and effacing' (A/E) lesion formation, the hallmark of EPEC pathogenicity. EspA was recently shown to be a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. In contrast, EspB is translocated into the host cell where it is localized to both membrane and cytosolic cell fractions. EspA and EspB are required for translocation of Tir to the host cell membrane suggesting that they may both be components of the translocation apparatus. In this study, we show that EspB co-immunoprecipitates with the EspA filaments and that, during EPEC infection of HEp-2 cells, EspB localizes closely with EspA. Using a number of binding assays, we also show that EspB can bind and be copurified with EspA. Nevertheless, binding of EspA filaments to the host cell membranes occurred even in the absence of EspB. These results suggest that following initial attachment of the EspA filaments to the target cells, EspB is delivered into the host cell membrane and that the interaction between EspA and EspB may be important for protein translocation.  相似文献   

9.
AIM: To evaluate the potential for polyclonal antibodies targeting enterohaemorrhagic Escherichia coli (EHEC) virulence determinants to prevent colonization of host cells by E. coli O157:H7. METHODS AND RESULTS: Rats and laying hens were immunized with recombinant proteins from E. coli O157:H7, EspA, C-terminal intimin or EscF. Rat antisera (IgG) or chicken egg powders (IgY) were assessed for their ability to inhibit growth and colonization-associated processes of E. coli O157:H7. Mammalian antisera with antibodies to intimin, EspA or EscF effectively reduced adherence of the pathogen to HeLa cells (P<0.05) and prevented type III secretion of Tir. Similarly, HeLa cells treated with chicken egg powder containing antibodies against intimin or EspA were protected from EHEC adherence (P<0.05). Neither egg nor rat antibody preparations had any antibacterial effect on the growth of EHEC (P>0.05). CONCLUSIONS: Antibody preparations targeting EHEC adherence-associated factors were effective at preventing adhesion and intimate colonization-associated events. SIGNIFICANCE AND IMPACT OF THE STUDY: This work indicates that immunotherapy with anti-adherence antibodies can reduce E. coli O157:H7 colonization of host cells. Passive immunization with specific antibodies may have the potential to reduce E. coli O157:H7 colonization in hosts such as cattle or humans.  相似文献   

10.
Shiga toxin producing Escherichia coli (STEC) O26:H11 is an enteric pathogen capable of causing severe hemorrhagic colitis that can lead to hemolytic uremic syndrome. This organism is able to colonize cattle and human intestinal epithelial cells by secreting effectors via a type III secretion system (T3SS). In this investigation, we examined the role of 2 effectors, Tir and NleB, and the structural translocator component EspA in the adherence of STEC to epithelial cells and in the colonization of cattle. Isogenic deletion mutants were constructed and using microscopy and flow cytometry compared to the wild-type strain in their ability to adhere to HEp-2 cells. A competitive assay was also used to measure the capacity of the mutants to colonize the intestinal tract of cattle, where both the mutant and the parental strains were introduced orally at the same time. Genomic DNA was extracted from enriched fecal samples collected at various time points, and quantitative real-time PCR was used to quantify bacteria. A significant reduction in fecal shedding was observed, and adherence to HEp-2 cells was decreased for the tir and espA mutants. Deletion of the nleB gene did not have a significant effect on the adherence of HEp-2 cells; however, in an in vivo model, it strongly reduced the ability of STEC O26:H11 to colonize the bovine intestinal tract.  相似文献   

11.
Enteropathogenic Escherichia coli (EPEC), an important cause of infantile diarrhoea in the developing world, disrupts host cell microvilli, causes actin rearrangements and attaches intimately to the host cell surface. This characteristic phenotype, referred to as the attaching and effacing (A/E) effect, is encoded on a 36 kb pathogenicity island called the locus of enterocyte effacement (LEE). The LEE includes genes involved in type III secretion and translocation, the eae gene encoding an outer membrane adhesin known as intimin, the tir gene for the translocated intimin receptor, a regulator and various genes of unknown function. Among this last group is sepL. To determine the role of SepL in EPEC pathogenesis, we constructed and tested a non-polar sepL mutant. We found that this sepL mutant is deficient for A/E and that it secretes markedly reduced quantities of those proteins involved in translocation (EspA, EspB and EspD), but normal levels of those proteins presumed to be effectors (Tir, EspF and EspG). Despite normal levels of secretion, the mutant strain was unable to translocate EspF and Tir into host cells and formed no EspA filaments. Fractionation studies revealed that SepL is a soluble cytoplasmic protein. Yeast two-hybrid and affinity purification studies indicated that SepL interacts with the LEE-encoded protein SepD. In contrast to SepL, we found that SepD is required for type III secretion of both translocation and effector proteins. Together, these results demonstrate that SepL has a unique role in type III secretion as a functional component of the translocation system that interacts with an essential element of the secretion machinery.  相似文献   

12.
Enteropathogenic E. coli (EPEC) utilize a type III secretion system to deliver virulence-associated effector proteins to the host cell. Four proteins, EspA, EspB, EspD, and Tir, which are integral to the formation of characteristic "attaching and effacing" (A/E) intestinal lesions, are known to be exported via the EPEC type III secretion system. Recent work demonstrated that EspA is a major component of a filamentous structure, elaborated on the surface of EPEC, which is required for translocation of EspB and Tir. The carboxyl terminus of EspA is predicted to comprise an alpha-helical region, which demonstrates heptad periodicity whereby positions a and d in the heptad repeat unit abcdefg are occupied by hydrophobic residues, indicating a propensity for coiled-coil interactions. Here we demonstrate multimeric EspA isoforms in EPEC culture supernatants and EspA:EspA interaction on solid phase. Non-conservative amino acid substitution of specific EspA heptad residues generated EPEC mutants defective in filament assembly but which retained the ability to induce A/E lesions; additional mutation totally abolished EspA filament assembly and A/E lesion formation. These results demonstrate a similarity to flagellar biosynthesis and indicate that the coiled-coil domain of EspA is required for assembly of the EspA filament-associated type III secretion translocon.  相似文献   

13.

Background  

In silico techniques are highly suited for both the discovery of new and development of existing vaccines. Enterohemorrhagic Escherichia coli O157:H7 (EHEC) exhibits a pattern of localized adherence to host cells, with the formation of microcolonies, and induces a specific histopathological lesion (attaching/effacing). The genes encoding the products responsible for this phenotype are clustered on a 35-kb pathogenicity island. Among these proteins, Intimin, Tir, and EspA, which are expressed by attaching-effacing genes, are responsible for the attachment to epithelial cell that leads to lesions.  相似文献   

14.
15.
Chloroplast genetic engineering offers an opportunity for high level expression and cost-effective recombinant protein production. Escherichia coli O157:H7 is one of the most important zoonotic pathogens causing hemorrhagic colitis (HC) and the life-threatening hemolytic-uremic syndrome in humans worldwide. The occurrence of zoonotic E. coli O157:H7 outbreaks in recent years has led to increased efforts in the development of safe and cost-effective immunogenic antigens against E. coli O157:H7. EspA and Tir/Intimin proteins are the important virulence factors which are encoded by the LEE locus of enterohemorrhagic E. coli. In this study, we hypothesized that the high level expression of the chimeric form of these effectors in chloroplasts and using tobacco transplastomic plants as an oral delivery system for the development of an edible-base vaccine would induce an immune response for the prevention of E. coli 0157:H7 attachment and colonization in animal model mice. The prokaryotic codon-optimized EIT protein was expressed in plastid genome via chloroplast transformation. Putative transplastomic plants were analyzed by PCR, and Southern blot analysis confirming chloroplast integration and homoplasmy in the T1 progeny. Immunoblotting and ELISA assays demonstrated that the EIT protein was expressed in chloroplasts and accumulated up to 1.4 % of total soluble protein in leaf tissue. In mice orally immunized with transplastomic tobacco plant leaves, high immunological responses (IgG and IgA specific antibodies) were detected in serum and feces. Finally, the challenging assay with E. coli O157:H7 in immunized mice showed reduced bacterial shedding.  相似文献   

16.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains are closely related human pathogens that are responsible for food-borne epidemics in many countries. Integration host factor (IHF) and the locus of enterocyte effacement-encoded regulator (Ler) are needed for the expression of virulence genes in EHEC and EPEC, including the elicitation of actin rearrangements for attaching and effacing lesions. We applied a proteomic approach, using two-dimensional polyacrylamide gel electrophoresis in combination with matrix-assisted laser desorption ionization-time of flight mass spectrometry and a protein database search, to analyze the extracellular protein profiles of EHEC EDL933, EPEC E2348/69, and their ihf and ler mutants. Fifty-nine major protein spots from the extracellular proteomes were identified, including six proteins of unknown function. Twenty-six of them were conserved between EHEC EDL933 and EPEC E2348/69, while some of them were strain-specific proteins. Four common extracellular proteins (EspA, EspB, EspD, and Tir) were regulated by both IHF and Ler in EHEC EDL933 and EPEC E2348/69. TagA in EHEC EDL933 and EspC and EspF in EPEC E2348/69 were present in the wild-type strains but absent from their respective ler and ihf mutants, while FliC was overexpressed in the ihf mutant of EPEC E2348/69. Two dominant forms of EspB were found in EHEC EDL933 and EPEC E2348/69, but the significance of this is unknown. These results show that proteomics is a powerful platform technology for accelerating the understanding of EPEC and EHEC pathogenesis and identifying markers for laboratory diagnoses of these pathogens.  相似文献   

17.
Enteropathogenic Escherichia coli (EPEC) is a significant cause of paediatric diarrhoea worldwide. Virulence requires adherence to intestinal epithelial cells, mediated in part through type IV bundle-forming pili (BFP), and the EPEC protein Tir. Tir is inserted into the enterocyte plasma membrane (PM), resulting in the formation of actin-rich pedestals. Tir is translocated by the type III secretion system (TTSS), through a pore comprised of EPEC proteins inserted into the PM. Here, we demonstrate that in the absence of BFP, EPEC adherence, effector translocation and pedestal formation are dependent on lipid rafts. Lipid raft disruption using methyl-beta-cyclodextrin (MbetaCD) decreased adherence by an EPEC BFP-deficient strain from 85% to 1%. Translocation of the effectors Tir and EspF was blocked by MbetaCD treatment, although the TTSS pore still formed. MbetaCD treatment after Tir delivery decreased pedestal formation by EPEC from 40% to 5%, but not by the related pathogen E. coli O157:H7 which uses a different Tir-based mechanism. In contrast, EPEC expressing the BFP can circumvent the requirement for membrane cholesterol. This suggests that lipid rafts play a role in virulence of this medically important pathogen.  相似文献   

18.
Enteropathogenic Escherichia coli uses a type III secretion apparatus to deliver proteins essential for pathogenesis to the host epithelium. Several proteins have been detected in culture supernatants of the prototype EPEC strain E2348/69 and three of these, EspA, EspB, and EspD, use type III machinery for export. Here, we report the identification and characterization of CesD, a protein required for proper EspB and EspD secretion. CesD shows sequence homology to chaperone proteins from other type III secretion pathways. Based on this, we hypothesize that CesD may function as a secretion chaperone in EPEC. A mutation in cesD abolished EspD secretion into culture supernatants and reduced the amount of secreted EspB, but had little effect on the amount of secreted EspA. The mutant strain was negative for both FAS and Tir phosphorylation, consistent with the previously described roles for EspB and EspD in EPEC pathogenesis. CesD was shown to interact with EspD but not EspB or EspA. CesD was detected in the bacterial cytosol, and, surprisingly, a substantial amount of the protein was also found to be associated with the inner membrane. Thus, although CesD has some attributes that are similar to other type III secretion chaperones, its membrane localization separates it from previously described members of this family.  相似文献   

19.
Calves become infected with Shiga toxin-producing Escherichia coli (STEC) early in life, which frequently results in long-term shedding of the zoonotic pathogen. Little is known about the animals'' immunological status at the time of infection. We assessed the quantity and dynamics of maternal and acquired antibodies to Shiga toxins (Stx1 and Stx2), the principal STEC virulence factors, in a cohort of 27 calves. Fecal and serum samples were taken repeatedly from birth until the 24th week of age. Sera, milk, and colostrums of dams were also assessed. STEC shedding was confirmed by detection of stx in fecal cultures. Stx1- and Stx2-specific antibodies were quantified by Vero cell neutralization assay and further analyzed by immunoblotting. By the eighth week of age, 13 and 15 calves had at least one stx1-type and at least one stx2-type positive culture, respectively. Eleven calves had first positive cultures only past that age. Sera and colostrums of all dams and postcolostral sera of all newborn calves contained Stx1-specific antibodies. Calf serum titers decreased rapidly within the first 6 weeks of age. Only five calves showed Stx1-specific seroconversion. Maternal and acquired Stx1-specific antibodies were mainly directed against the StxA1 subunit. Sparse Stx2-specific titers were detectable in sera and colostrums of three dams and in postcolostral sera of their calves. None of the calves developed Stx2-specific seroconversion. The results indicate that under natural conditions of exposure, first STEC infections frequently coincide with an absence of maternal and acquired Stx-specific antibodies in the animals'' sera.Shiga toxin-producing Escherichia coli (STEC), also known as enterohemorrhagic E. coli (EHEC), is a food-borne pathogen which can evoke life-threatening diseases, such as hemorrhagic colitis and hemolytic-uremic syndrome, in humans (26). Cattle and other ruminants are primary reservoirs for STEC serotypes that are typically associated with human disease, e.g., O157:H7. Calves become infected with STEC early in life via horizontal or vertical transmission (55) and do not develop clinical signs of infection but may shed the bacteria for several months and in great quantities (15, 64). Reduction of persistent STEC shedding in cattle would contribute greatly to preventing human STEC infections.Evidence that vaccination may be a sensible control option has come from studies in which cattle shed E. coli O157 less frequently following immunization with STEC O157:H7 antigens (48). However, several other studies deploying various STEC antigens produced conflicting data regarding the efficacy of vaccines to reduce or prevent STEC shedding by cattle (16, 61). Identification of candidate antigens is hampered by the limited knowledge of the immune responses occurring after bovine STEC infections, their kinetics, and their meaning for the control of STEC shedding. Serological responses against a variety of antigens following E. coli O157 colonization have repeatedly been reported. Infected animals frequently develop antibodies against STEC lipopolysaccharides (LPS), e.g., O157 LPS (25). Such antibodies inhibit STEC O157 adhesion to cells in vitro (45), but shedding is not affected by serum and mucosal O157 titers in vivo (25). Mucosal immune responses are directed mainly against membrane-associated and type III secreted STEC proteins (40). Type III secreted antigens are relatively conserved among non-O157 STEC serotypes and were assumed to be broadly cross-protective (48). Antibodies against Tir (translocated intimin receptor), intimin, and Esps (E. coli secreted proteins) A and B are detectable in calves and adult cattle after natural and experimental STEC infections or after vaccination based on these antigens (9, 16, 48, 60). Nevertheless, they do not limit the magnitude or duration of STEC shedding under field conditions (61), where cattle are confronted with a variety of different STEC strains (19, 55).Shiga toxins (Stx) are potent protein cytotoxins and represent the principal STEC virulence factors in the pathogenesis of human infections (49). Cumulating evidence shows that Stx act as immunomodulating agents during bovine STEC infections. Stx1 alters the cytokine expression pattern in mucosal macrophages (56) and intraepithelial lymphocytes (38) and suppresses the activation and proliferation of mucosal and peripheral lymphocytes in vitro (36, 37). The development of an adaptive cellular immune response is significantly delayed following experimental infection of calves with Stx2-producing STEC O157:H7 compared to that in animals inoculated with Stx-negative E. coli O157:H7 (22). In vitro and in vivo studies showed that Stx act during the early phases of immune activation rather than downregulating an established immunity (22, 57). Consequently, Stx may principally exhibit their immunomodulating activity upon first STEC infection of hitherto immunologically naïve animals.Antibodies against Stx may be essential to protect cattle from Stx-mediated immunosuppression, but only when they are present in sufficient amounts at the time of initial STEC infection. Stx-specific antibodies are detectable in sera and colostrums of naturally infected cows (6, 47). In contrast, naturally exposed calves mostly lack Stx-specific antibodies, and antibodies are barely inducible by repeated experimental STEC infections (22, 25). Maternal antibodies were considered to interfere with the development of an acquired anti-Stx immune response in calves (25), but mother-to-offspring transfer of such antibodies has not been confirmed to date. The objectives of this study were to investigate the dynamics of maternal Stx1- and Stx2-specific antibodies in calves held under conditions of natural exposure and to determine the age at the onset of acquired Stx immunity relative to the time of initial STEC infection.  相似文献   

20.
The biofilm life style helps bacteria resist oxidative stress, desiccation, antibiotic treatment, and starvation. Biofilm formation involves a complex regulatory gene network controlled by various environmental signals. It was previously shown that prophage insertions in mlrA and heterogeneous mutations in rpoS constituted major obstacles limiting biofilm formation and the expression of extracellular curli fibers in strains of Escherichia coli serotype O157:H7. The purpose of this study was to test strains from other important serotypes of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O113, O121, and O145) for similar regulatory restrictions. In a small but diverse collection of biofilm-forming and non-forming strains, mlrA prophage insertions were identified in only 4 of the 19 strains (serotypes O103, O113, and O145). Only the STEC O103 and O113 strains could be complemented by a trans-copy of mlrA to restore curli production and Congo red (CR) dye affinity. RpoS mutations were found in 5 strains (4 serotypes), each with low CR affinity, and the defects were moderately restored by a wild-type copy of rpoS in 2 of the 3 strains attempted. Fourteen strains in this study showed no or weak biofilm formation, of which 9 could be explained by prophage insertions or rpoS mutations. However, each of the remaining five biofilm-deficient strains, as well as the two O145 strains that could not be complemented by mlrA, showed complete or nearly complete lack of motility. This study indicates that mlrA prophage insertions and rpoS mutations do limit biofilm and curli expression in the non-serotype O157:H7 STEC but prophage insertions may not be as common as in serotype O157:H7 strains. The results also suggest that lack of motility provides a third major factor limiting biofilm formation in the non-O157:H7 STEC. Understanding biofilm regulatory mechanisms will prove beneficial in reducing pathogen survival and enhancing food safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号