首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Studies in the yeast Saccharomyces cerevisiae have validated the major features of the double-strand break repair (DSBR) model as an accurate representation of the pathway through which meiotic crossovers (COs) are produced. This success has led to this model being invoked to explain double-strand break (DSB) repair in other contexts. However, most non-crossover (NCO) recombinants generated during S. cerevisiae meiosis do not arise via a DSBR pathway. Furthermore, it is becoming increasingly clear that DSBR is a minor pathway for recombinational repair of DSBs that occur in mitotically-proliferating cells and that the synthesis-dependent strand annealing (SDSA) model appears to describe mitotic DSB repair more accurately. Fundamental dissimilarities between meiotic and mitotic recombination are not unexpected, since meiotic recombination serves a very different purpose (accurate chromosome segregation, which requires COs) than mitotic recombination (repair of DNA damage, which typically generates NCOs).  相似文献   

3.
Programmed and unprogrammed double-strand breaks (DSBs) often arise from such physiological requirements as meiotic recombination, and exogenous insults, such as ionizing radiation (IR). Due to deleterious impacts on genome stability, DSBs must be appropriately processed and repaired in a regulatory manner. Recent investigations have indicated that ubiquitination is a critical factor in DNA damage response and meiotic recombination repair. This review summarizes the effects of proteins and complexes associa...  相似文献   

4.
赵烨  华跃进 《生命科学》2014,(11):1136-1142
耐辐射球菌对于电离辐射等DNA损伤剂具有极强的抗性,能够将同一个基因组中同时产生的高达100个以上的DNA双链断裂在数十小时内高效而精准地进行修复,是研究DNA双链断裂修复机制的重要模式生物。同源重组、非同源末端连接和单链退火途径作为3个主要的修复途径参与了耐辐射球菌基因组DNA双链断裂的修复过程。此外,一系列新发现的重要蛋白质,如Ppr I、Ddr B等对于耐辐射球菌基因组的修复过程同样至关重要。根据本实验室和国内外在这一研究领域近年来的报道,以不同的修复途径为线索,综述该菌DNA双链断裂修复机制的最新研究成果。  相似文献   

5.
唐子执  刘聪  曾鸣 《生命科学》2014,(11):1172-1175
在各种DNA损伤中,DNA双链断裂(double-strand break,DSB)是最为严重的一种,快速准确地修复DSB对维持基因组稳定性起着至关重要的作用。真核生物细胞通过一系列复杂的信号转导途径激活对DSB的修复,其中最为重要的是同源重组和非同源末端连接机制。最近的研究表明,这两种方式在DSB修复的早期是相互竞争的关系,其选择在很大程度上受到53BP1及同源蛋白质的调控。将讨论53BP1作为DSB修复途径的核心因子,在染色质水平整合BRCA1、Ct IP等修复因子和多种组蛋白修饰构成的信号途径,介导同源重组和非同源末端连接通路选择的分子机制。  相似文献   

6.
7.
8.
Summary In budding yeast Saccharomyces cerevisiae, centromeres and telomeres are tethered to the nuclear envelope during premeiotic interphase. Immediately after cells enter meiotic prophase, chromosomes undergo global reorganization, including bouquet formation (telomere clustering), non-homologous centromere coupling, homologous pairing, and assembly/disassembly of synaptonemal complexes. These chromosome dynamics have been implicated in promoting pairing, synapsis, crossover DNA recombination and segregation between homologous chromosomes. This review discusses recent studies related to the role of small ubiquitin-like modifier (SUMO) modification in controlling the overall budding yeast chromosome dynamics during meiotic prophase. This article is dedicated to the 20th anniversary of the Institute of Molecular Biology, Academia Sinica. TFW is grateful to all teachers at IMB, including James C. Wang, Ru-Chih Huang, Ping-Chien Huang, Chung Wang, Henry Y. Sun, Jychian Chen, Ming-Zong Lai, Bon-Chu Chung, and Soo-Chen Cheng. We apologize to those whose work could not be cited due to the brevity of this contribution. TFW was supported by the Investigator Award from Academia Sinica and by the Ta-You Wu Award from the National Science Council, Taiwan.  相似文献   

9.
李书粉  李莎  邓传良  卢龙斗  高武军 《遗传》2015,37(2):157-164
XY性染色体决定系统是决定植物性别的主要方式,但是对于其起源与演化机制却知之甚少。目前认为,携带控制雌蕊或雄蕊发育基因的一对常染色体由于某种未知原因的突变形成早期的neo-Y或neo-X性染色体,随着演化的进行,早期XY性染色体之间的重组逐渐受到抑制,非重组区域扩展最终形成异型的性染色体。研究发现,重复序列的累积以及DNA甲基化等因素都可能参与了XY性染色体的异染色质化、重组抑制及Y染色体体积增大过程。转座子作为一种基因组中含量最高的重复序列在性染色体演化中扮演了重要的角色,包括性染色体演化的起始激发,以及导致性染色体局部表观遗传修饰使其发生异染色质化扩展和重组抑制。文章综述了转座子在植物性染色体上的累积及其与性染色体异染色质化之间的关系,并简要分析了转座子在性染色体演化过程中的作用。  相似文献   

10.
The SPO11-generated DNA double-strand breaks (DSBs) that initiate meiotic recombination occur non-randomly across genomes, but mechanisms shaping their distribution and repair remain incompletely understood. Here, we expand on recent studies of nucleotide-resolution DSB maps in mouse spermatocytes. We find that trimethylation of histone H3 lysine 36 around DSB hotspots is highly correlated, both spatially and quantitatively, with trimethylation of H3 lysine 4, consistent with coordinated formation and action of both PRDM9-dependent histone modifications. In contrast, the DSB-responsive kinase ATM contributes independently of PRDM9 to controlling hotspot activity, and combined action of ATM and PRDM9 can explain nearly two-thirds of the variation in DSB frequency between hotspots. DSBs were modestly underrepresented in most repetitive sequences such as segmental duplications and transposons. Nonetheless, numerous DSBs form within repetitive sequences in each meiosis and some classes of repeats are preferentially targeted. Implications of these findings are discussed for evolution of PRDM9 and its role in hybrid strain sterility in mice. Finally, we document the relationship between mouse strain-specific DNA sequence variants within PRDM9 recognition motifs and attendant differences in recombination outcomes. Our results provide further insights into the complex web of factors that influence meiotic recombination patterns.  相似文献   

11.
12.
Replication factor C1 (RFC1), which is conserved in eukaryotes, is involved in DNA replication and checkpoint control. However, a RFC1 product participating in DNA repair at meiosis has not been reported in Arabidopsis. Here, we report functional characterization of AtRFC1 through analysis of the rfc1–2 mutant. The rfc1–2 mutant displayed normal vegetative growth but showed silique sterility because the male gametophyte was arrested at the uninucleus microspore stage and the female at the functional megaspore stage. Expression of AtRFC1 was concentrated in the reproductive organ primordia, meiocytes and developing gametes. Chromosome spreads showed that pairing and synapsis were normal, and the chromosomes were broken when desynapsis began at late prophase I, and chromosome fragments remained in the subsequent stages. For this reason, homologous chromosomes and sister chromatids segregated unequally, leading to pollen sterility. Immunolocalization revealed that the AtRFC1 protein localized to the chromosomes during zygotene and pachytene in wild‐type but were absent in the spo11–1 mutant. The chromosome fragmentation of rfc1–2 was suppressed by spo11–1, indicating that AtRFC1 acted downstream of AtSPO11‐1. The similar chromosome behavior of rad51 rfc1–2 and rad51 suggests that AtRFC1 may act with AtRAD51 in the same pathway. In summary, AtRFC1 is required for DNA double‐strand break repair during meiotic homologous recombination of Arabidopsis.  相似文献   

13.
The ability of plants to repair DNA double-strand breaks (DSBs) is essential for growth and fertility. The Arabidopsis DSB repair proteins AtRAD50 and AtMRE11 form part of an evolutionarily conserved complex that, in Saccharomyces cerevisiae and mammals, includes a third component termed XRS2 and NBS1, respectively. The MRN complex (MRX in yeast) has a direct role in DSB repair and is also required for DNA damage signaling and checkpoint activation in a pathway mediated by the protein kinase ATM. This study characterizes Arabidopsis and maize NBS1 orthologues that share conserved protein motifs with human NBS1. Both plant NBS1 proteins interact with the corresponding MRE11 orthologues, and deletion analysis of AtNBS1 defines a region towards the C-terminus (amino acids 465-500) that is required for interaction with AtMRE11. Arabidopsis lines homozygous for a T-DNA insertional mutation in AtNBS1 display hypersensitivity to the DNA cross-linking reagent mitomycin C, and this phenotype can be rescued by complementation with the wild-type gene, consistent with a function for AtNBS1 in plant DSB repair. Analysis of atnbs1-1 atatm double mutants revealed a role for AtNBS1 in meiotic recombination. While atatm mutants produce reduced seed numbers, plants deficient in both AtATM and AtNBS1 are completely infertile. Cytological analysis of these double mutants revealed incomplete chromosome pairing and synapsis in meiotic prophase, and extensive chromosome fragmentation in metaphase I and subsequent stages. These results suggest a novel role for AtNBS1 that is independent of AtATM-mediated signaling and functions in the very early stages of meiosis.  相似文献   

14.
The reactivation of X‐linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X‐linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs. We also generate Xist‐inducible female ESCs and show that the lower HR efficiency is restored when X chromosome inactivation is induced. Finally, we assess the X‐linked genes with a role in DNA repair and find that Brcc3 is one of the genes involved in a network promoting proper HR. Our findings link the double doses of X‐linked genes with lower DNA repair activity, and this may have relevance for common diseases in female patients, such as breast cancer.  相似文献   

15.
In an attempt to understand the feasibility of future targeted genome optimization in agronomic crops, we tested the efficiency of homologous recombination-mediated sequence insertion upon induction of a targeted DNA double-strand break at the desired integration site in maize. By the development of an efficient tissue culture protocol, and with the use of an I- Sce I gene optimized for expression in maize, large numbers of precisely engineered maize events were produced in which DNA integration occurred very accurately. In a subset of events examined in detail, no additional deletions and/or insertions of short filler DNA at the integration site were observed. In 30%–40% of the recovered events, no traces of random insertions were observed. This was true for DNA delivery by both Agrobacterium and particle bombardment. These data suggest that targeted double-strand break-induced homologous recombination is a superior method to generate specific desired changes in the maize genome, and suggest targeted genome optimization of agronomic crops to be feasible.  相似文献   

16.
《Molecular cell》2023,83(8):1237-1250.e15
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
During the evolutionary process of the sex chromosomes, a general principle that arises is that cessation or a partial restriction of recombination between the sex chromosome pair is necessary. Data from phylogenetically distinct organisms reveal that this phenomenon is frequently associated with the accumulation of heterochromatin in the sex chromosomes. Fish species emerge as excellent models to study this phenomenon because they have much younger sex chromosomes compared to higher vertebrates and many other organisms making it possible to follow their steps of differentiation. In several Neotropical fish species, the heterochromatinization, accompanied by amplification of tandem repeats, represents an important step in the morphological differentiation of simple sex chromosome systems, especially in the ZZ/ZW sex systems. In contrast, multiple sex chromosome systems have no additional increase of heterochromatin in the chromosomes. Thus, the initial stage of differentiation of the multiple sex chromosome systems seems to be associated with proper chromosomal rearrangements, whereas the simple sex chromosome systems have an accumulation of heterochromatin. In this review, attention has been drawn to this contrasting role of heterochromatin in the differentiation of simple and multiple sex chromosomes of Neotropical fishes, highlighting their surprising evolutionary dynamism.  相似文献   

19.
20.
Nonhomologous end joining (NHEJ) is an error-prone DNA double-strand break repair pathway that is active throughout the cell cycle. A substantial fraction of NHEJ repair events show deletions and, less often, insertions in the repair joints, suggesting an end-processing step comprising the removal of mismatched or damaged nucleotides by nucleases and other phosphodiesterases, as well as subsequent strand extension by polymerases. A wide range of nucleases, including Artemis, Metnase, APLF, Mre11, CtIP, APE1, APE2 and WRN, are biochemically competent to carry out such double-strand break end processing, and have been implicated in NHEJ by at least circumstantial evidence. Several additional DNA end-specific phosphodiesterases, including TDP1, TDP2 and aprataxin are available to resolve various non-nucleotide moieties at DSB ends. This review summarizes the biochemical specificities of these enzymes and the evidence for their participation in the NHEJ pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号