首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Shi Y  Li N  Yan Y  Wang H  Li Y  Lu C  Sun J 《Current microbiology》2012,65(1):28-34
Development of novel antibacterial agents is required to control infection with multidrug-resistant Streptococcus suis. HolSMP and LySMP, the holin and lysin of S. suis serotype 2 bacteriophage, named SMP, are responsible for lysis of host cells and release of progeny phage. HolSMP and LySMP expressed in Escherichia coli BL21(DE3) exerted efficient activity at 37?°C, pH 5.2, with addition of 0.8?% β-mercaptoethanol. Lytic spectra of purified HolSMP, LySMP or HolSMP?+?LySMP mixture were investigated. HolSMP, exhibiting a narrow lytic spectrum, was effective against Staphylococcus aureus and Bacillus subtilis, which were insensitive to LySMP. Moreover, HolSMP was identified as a promising antibacterial agent which was able to extend the spectrum of LySMP. The data suggest that combined use of holin and lysin could be a candidate strategy for resolution of drug resistance.  相似文献   

3.
A truncated derivative of the phage endolysin LysK containing only the CHAP (cysteine- and histidine-dependent amidohydrolase/peptidase) domain exhibited lytic activity against live clinical staphylococcal isolates, including methicillin-resistant Staphylococcus aureus. This is the first known report of a truncated phage lysin which retains high lytic activity against live staphylococcal cells.  相似文献   

4.
5.
Exposure of Vibrio harveyi (strain VH1114) to V. harveyi siphovirus-like phage 1 (VHS1) resulted in the production of a low percentage of lysogenized clones of variable stability. These were retrieved most easily as small colonies within dot plaques. Analysis revealed that VHS1 prophage was most likely carried by VH1114 as an episome rather than integrated into the host chromosome. In the late exponential growth phase, lysogenized VH1114 continuously produced VHS1 but also gave rise to a large number of cured progeny. The absence of phage DNA in the cured progeny was confirmed by the absence of VHS1 DNA in Southern blot and PCR assays. Curiously, these very stable, cured subclones did not show the parental phenotype of clear plaques with VHS1 but instead showed turbid plaques, both in overlaid lawns and in dot plaque assays. This phenotypic difference from the original parental isolate suggested that transient lysogeny by VHS1 had resulted in a stable genetic change in the cured clones. Such clones may be called pseudolysogens (i.e., false lysogens), since they have undergone transient lysogeny and have retained some resistance to full lytic phage development, despite the loss of viable or detectable prophage.  相似文献   

6.
7.
Group A streptococcus (GAS) is an important human pathogen that produces several extracellular exotoxins to facilitate invasion and infection. Streptococcal pyrogenic exotoxin B (SPE B) has been demonstrated to be an important virulence factor of GAS. Our previous studies indicate that SPE B cleaves complement 3 (C3) and inhibits the activation of complement pathways. In this study, we constructed and expressed recombinant fragments of SPE B to examine the C3-binding site of SPE B. Using enzyme-linked immunosorbent assays and pull-down assays, we found that the C-terminal domain, containing amino-acid residues 345–398, of SPE B was the major binding site of human serum C3. We further identified a major, Ala376-Pro398, and a minor C3-binding motif, Gly346-Gly360, that both mediated the binding of C3 complement. Immunization with the C3-binding motifs protected mice against challenge with a lethal dose of non-invasive M49 strain GAS but not invasive M1 strains. To achieve higher efficiency against invasive M1 GAS infection, a combination of synthetic peptides derived from C-terminal epitope of streptolysin S (SLSpp) and from the major C3-binding motif of SPE B (PP6, Ala376-Pro398) was used to elicit specific immune response to those two important streptococcal exotoxins. Death rates and the severity of skin lesions decreased significantly in PP6/SLSpp-immunized mice that were infected with invasive M1 strains of GAS. These results indicate a combination of the C3-binding motif of SPE B and the protective epitope of SLS could be used as a subunit vaccine against invasive M1 strains group A streptococcal infection.  相似文献   

8.
Kochkina  Z. M.  Chirkov  S. N. 《Microbiology》2001,70(6):706-710
The causes of bacteriophage 1-97A inactivation by the chitosan oligomer with a polymerization degree of 15 and the influence of the oligomer on the phage reproduction in the culture of Bacillus thuringiensissubsp. galleriae, strain 1-97, were studied. The study of the inactivation kinetics showed that, in 1 h, virtually all chitosan was bound to the phage particles, causing, as evidenced by electron microscopy, DNA release from the phage head, destruction of the phage particles, and agglutination of the phage particles or of their tails in the region of the basal plate. High-polymeric chitosan caused more pronounced destruction of the phage particles than the oligomer. It was established that chitosan prevented the production of complete phage particles. One of the mechanisms of such an influence may be the production in the presence of chitosan of phage particles devoid of DNA.  相似文献   

9.
Streptococcus pyogenes is a Gram-positive bacterium that causes several diseases, including acute tonsillitis and toxic shock syndrome. The surface-localized M protein, which is the most extensively studied virulence factor of S. pyogenes, has an approximately 50-residue N-terminal hypervariable region (HVR) that plays a key role in the escape of the host immunity. Despite the extensive sequence variability in this region, many HVRs specifically bind human C4b-binding protein (C4BP), a plasma protein that inhibits complement activation. Although the more conserved parts of M protein are known to have dimeric coiled-coil structure, it is unclear whether the HVR also is a coiled coil. Here, we use nuclear magnetic resonance (NMR) to study the conformational properties of HVRs from M4 and M22 proteins in isolation and in complex with the M protein binding portion of C4BP. We conclude that the HVRs of M4 and M22 are folded as coiled coils and that the folded nucleus of the M4 HVR has a length of approximately 27 residues. Moreover, we demonstrate that the C4BP binding surface of M4-N is found within a region of four heptad repeats. Using molecular modeling, we propose a model for the structure of the M4 HVR that is consistent with our experimental information from NMR spectroscopy.  相似文献   

10.
A recently isolated phage, vB_EcoP_SU10 (SU10), with the unusual elongated C3 morphotype, can infect a wide range of Escherichia coli strains. We have sequenced the genome of this phage and characterized it further by mass spectrometry based proteomics, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and ultra-thin section electron microscopy. The genome size is 77,327 base pairs and its genes, and genome architecture, show high similarity to the phiEco32 phage genes and genome. The TEM images reveal that SU10 have a quite long tail for being a Podoviridae phage, and that the tail also changes conformation upon infection. The ultra-thin section electron microscopy images of phages at the stage of replication within the host cell show that the phages form a honeycomb-like structure under packaging of genomes and assembly of mature capsids. This implies a tight link between the replication and cutting of the concatemeric genome, genome packaging, and capsid assembly. We have also performed a phylogenetic analysis of the structural genes common between Podoviridae phages of the C1 and C3 morphotypes. The result shows that the structural genes have coevolved, and that they form two distinct groups linked to their morphotypes. The structural genes of C1 and C3 phages appear to have diverged around 280 million years ago applying a molecular clock calibrated according to the presumed split between the Escherichia – Salmonella genera.  相似文献   

11.
12.
A symbiotic mutant of Rhizobium meliloti Rmd438 (sxf C:: Tn5) which was phage resistant against RMP64, failed to utilize galactose as carbon source as reported earlier (21). The Bg/ll gene bank of wild type R. meliloti was mobilized into Rmd438 and a clone pSP676 which complemented for phage sensitivity was isolated. In order to characterize this clone, a Bg/ll and EcoRI map was constructed. The insert of 13.2 kb had three Bg/ll fragments of 4.0, 3.6 and 5.6 kb in this order. All three fragments were subcloned on the vector pRK290 and mobilized into Sxf-mutants. The complementation for phage sensitivity, symbiosis and galactose utilization properties are discussed.  相似文献   

13.
Interactions between proenzymic or activated complement subcomponents of C1 and C1 Inh (C1 inhibitor) were analysed by sucrose-density-gradient ultracentrifugation and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The interaction of C1 Inh with dimeric C1r in the presence of EDTA resulted into two bimolecular complexes accounting for a disruption of C1r. The interaction of C1 Inh with the Ca2+-dependent C1r2-C1s2 complex (8.8 S) led to an 8.5 S inhibited C1r-C1s-C1 Inh complex (1:1:2), indicating a disruption of C1r2 and of C1s2 on C1 Inh binding. The 8.5 S inhibited complex was stable in the presence of EDTA; it was also formed from a mixture of C1r, C1s and C1 Inh in the presence of EDTA or from bimolecular complexes of C1r-C1 Inh and C1s-C1 Inh. C1r II, a modified C1r molecule, deprived of a Ca2+-binding site after autoproteolysis, did not lead to an inhibited tetrameric complex on incubation with C1s and C1 Inh. These findings suggest that, when C1 Inh binds to C1r2-C1s2 complex, the intermonomer links inside C1r2 or C1s2 are weakened, whereas the non-covalent Ca2+-independent interaction between C1r2 and C1s2 is strengthened. The nature of the proteinase-C1 Inh link was investigated. Hydroxylamine (1M) was able to dissociate the complexes partially (pH 7.5) or totally (pH 9.0) when the incubation was performed in denaturing conditions. An ester link between a serine residue at the active site of C1r or C1s and C1 Inh is postulated.  相似文献   

14.
Locus Determining P1 Phage Restriction in Escherichia coli   总被引:2,自引:0,他引:2       下载免费PDF全文
The locus determining P1 phage restriction has been mapped at 89.3 min on the Escherichia coli map, about 0.2 min away from the hsp marker.  相似文献   

15.
Infections with Streptococcus pyogenes exhibit a wide spectrum of infections ranging from mild pharyngitis to severe Streptococcal toxic shock syndrome (STSS). The M1 serotype of Streptococcus pyogenes is most commonly associated with STSS. In the present study, we hypothesized that Rac1 signaling might regulate M1 protein-induced lung injury. We studied the effect of a Rac1 inhibitor (NSC23766) on M1 protein-provoked pulmonary injury. Male C57BL/6 mice received NSC23766 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Treatment with NSC23766 decreased M1 protein-induced neutrophil infiltration, edema formation and tissue injury in the lung. M1 protein challenge markedly enhanced Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Rac1 activity had no effect on M1 protein-induced expression of Mac-1 on neutrophils. However, Rac1 inhibition markedly decreased M1 protein-evoked formation of CXC chemokines in the lung. Moreover, NSC23766 completely inhibited M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. We conclude that these novel results suggest that Rac1 signaling is a significant regulator of neutrophil infiltration and CXC chemokine production in the lung. Thus, targeting Rac1 activity might be a potent strategy to attenuate streptococcal M1 protein-triggered acute lung damage.  相似文献   

16.
By utilizing conventional techniques of pressure ultrafiltration, gel filtration chromatography, diethylaminoethyl cellulose chromatography, and preparative polyacrylamide electrophoresis, the L component of the group D lysin produced by Streptococcus zymogenes strains has been purified to a state of homogeneity as determined by the techniques of disc-gel electrophoresis at pH 9.3 and 4.3 and isoelectric focusing. The L component was found to be a protein possessing a molecular weight of 11,000 with a slight net negative charge at physiological pH.  相似文献   

17.
18.
Streptococcus lactis ME2 is a dairy starter strain that is insensitive to a variety of phage, including 18. The efficiency of plating of 18 on ME2 and N1 could be increased from <1 × 10−9 to 5.0 × 10−2 and from 7.6 × 10−7 to 2.1 × 10−2, respectively, when the host strains were subcultured at 40°C before plating the phage and the phage assay plates were incubated at 40°C. Host-dependent replication was demonstrated in N1 at 30°C and in N1 and ME2 at 40°C, suggesting the operation of a temperature-sensitive restriction and modification system in ME2 and N1. The increased sensitivity of ME2 and N1 to 18 at 40°C was also demonstrated by lysis of broth cultures and increased plaque size. ME2 grown at 40°C showed an increased ability to adsorb 18, indicating a second target for temperature-dependent phage sensitivity in ME2. Challenge of N1 with a 18 preparation that had been previously modified for growth on N1 indicated that at 40°C phage development was characterized by a shorter latent period and larger burst size than at 30°C. The evidence presented suggests that the high degree of phage insensitivity expressed by ME2 consists of a variety of temperature-sensitive mechanisms, including (i) the prevention of phage adsorption, (ii) host-controlled restriction of phage, and (iii) suppression of phage development. At 30°C these factors appear to act cooperatively to prevent the successful emergence of lytic phage active against S. lactis ME2.  相似文献   

19.
Superantigens (SAgs) play an important role in the pathogenesis of severe invasive infections caused by Group A Streptococcus (GAS). We had shown earlier that the expression of streptococcal cysteine protease SpeB results in partial loss of the immune-stimulating activity of the native secreted GAS SAgs, namely the streptococcal pyrogenic exotoxins produced by the globally disseminated M1T1 GAS strain, associated with invasive infections worldwide. In this study, we examined the susceptibility of each of the M1T1 recombinant SAgs to degradation by rSpeB. Whereas SmeZ was degraded completely within 30 min of incubation with rSpeB, SpeG, and SpeA were more resistant and SpeJ was completely unaffected by the proteolytic effects of this protease. Proteomic analyses demonstrated that the order of susceptibility of the M1T1 SAgs to SpeB proteolysis is unaltered when they are present in a mixture that reflects their native physiological status. As expected, the degradation of SmeZ abolished its immune stimulatory activity. In silico sequence disorder and structural analyses revealed that SmeZ, unlike the three other structurally related SAgs, possesses a putative SpeB cleavage site within an area of the protein likely to be exposed to the surface. The study provides evidence for the effect of subtle structural differences between highly similar SAgs on their biological activity.  相似文献   

20.
Activation of the C1 complex in the presence of C1 inactivator (C1 IA) is known to result in the formation of tetramer C1 IA-C1r-C1s-C1 IA complexes that are dissociated from C1q. Both C1r and C1s of the tetramers are present in their activated forms. The present investigation concerned the generation of trimer complexes containing C1 IA, activated C1r, and zymogen C1s (C1 IA-C1r-C1s). C1 IA-C1r-C1s were released from C1q and were formed in high concentration during prolonged incubation (1 to 3 days) of normal serum at 37 degrees C without addition of activators. By contrast, dissociation of C1 with formation of C1 IA-C1r-C1s-C1 IA was complete within 30 min at 37 degrees C, when the serum was treated with heat-aggregated IgG (1 g/liter). On size exclusion chromatography (TSK-4000), C1 IA-C1r-C1s and C1 IA-C1r-C1s-C1 IA emerged with apparent m.w. of 320,000 and 460,000, respectively. The composition of the complexes was examined by absorption of serum with F(ab')2 anti-C1s- or anti-C1r-coated Sepharose beads. Eluates were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with immunoblotting. Under nonreducing conditions, heat-aggregated IgG-treated serum showed high concentrations of C1 IA-C1r (m.w. 202,000) and C1 IA-C1s (m.w. 194,000), while serum incubated at 37 degrees C without activators showed high concentrations of C1 IA-C1r but no C1 IA-C1s. Under reducing conditions, heat-aggregated IgG-treated serum showed m.w. 120,000 and 110,000 complexes of C1 IA and the C1r and C1s light chains, respectively. Uncleaved C1s and the m.w. 120,000 complex was found in serum that was incubated at 37 degrees C without activators. Consistent with results obtained by size exclusion chromatography, analysis by crossed immunoelectrophoresis and by electroimmunoassay showed that C1s could be released from C1 IA-C1r-C1s in the presence of EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号