首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archease is a 16-kDa protein that is conserved in all three domains of life. In diverse bacteria and archaea, the genes encoding Archease and the tRNA ligase RtcB are localized into an operon. Here we provide a rationale for this operon organization by showing that Archease and RtcB from Pyrococcus horikoshii function in tandem, with Archease altering the catalytic properties of the RNA ligase. RtcB catalyzes the GTP and Mn(II)-dependent joining of either 2′,3′-cyclic phosphate or 3′-phosphate termini to 5′-hydroxyl termini. We find that catalytic concentrations of Archease are sufficient to activate RtcB, and that Archease accelerates both the RNA 3′-P guanylylation and ligation steps. In addition, we show that Archease can alter the NTP specificity of RtcB such that ATP, dGTP or ITP is used efficiently. Moreover, RtcB variants that have inactivating substitutions in the guanine-binding pocket can be rescued by the addition of Archease. We also present a 1.4 Å-resolution crystal structure of P. horikoshii Archease that reveals a metal-binding site consisting of conserved carboxylates located at the protein tip. Substitution of the Archease metal-binding residues drastically reduced Archease-dependent activation of RtcB. Thus, evolution has sought to co-express archease and rtcB by creating a tRNA splicing operon.  相似文献   

2.
RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme.  相似文献   

3.
Multiple segmental and selective isotope labeling of RNA with three segments has been demonstrated by introducing an RNA segment, selectively labeled with 13C9/15N2/2H(1′, 3′, 4′, 5′, 5′′)-labeled uridine residues, into the central position of the 20 kDa ε-RNA of Duck Hepatitis B Virus. The RNA molecules were produced via two efficient protocols: a two-step protocol, which uses T4 DNA ligase and T4 RNA ligase 1, and a one-pot protocol, which uses T4 RNA ligase 1 alone. With T4 RNA ligase 1 all not-to-be-ligated termini are usually protected to prevent formation of side products. We show that such labor-intensive protection of termini is not required, provided segmentation sites can be chosen such that the segments fold into the target structure or target-like structures and thus are not trapped into stable alternate structures. These sites can be reliably predicted via DINAMelt. The simplified NMR spectrum provided evidence for the presence of a U28 H3-imino resonance, previously obscured in the fully labeled sample, and thus of the non-canonical base pair U28:C37. The demonstrated multiple segmental labeling protocols are generally applicable to large RNA molecules and can be extended to more than three segments.  相似文献   

4.
Clp1 proteins are essential components of the eukaryal mRNA 3′ cleavage-polyadenylation machinery. Human Clp1 has an additional function as an RNA-specific 5′-OH polynucleotide kinase, which is implicated in RNA end healing. Yeast Clp1 has no kinase activity, although it binds ATP. Here we report that Clp1-like proteins are extant in archaea. Purification and characterization of Pyrococcus horikoshii Clp1 (PhoClp1) reveals it to be a thermostable 5′-OH polynucleotide kinase optimally active at 55°C to 85°C. PhoClp1 catalyzes transfer of the gamma phosphate from ATP (K m 16 μM) to either 5′-OH RNA or DNA ends, although it prefers RNA in a competitive situation. Increasing the monovalent salt concentration to 250 mM suppresses the DNA kinase without affecting RNA phosphorylation, suggesting that RNA is a likely substrate for this enzyme in vivo. Indeed, we show that expression of PhoClp1 in budding yeast can complement a lethal mutation in the 5′-OH RNA kinase module of tRNA ligase. PhoClp1 is a member of the P-loop phosphotransferase superfamily. Alanine mutations at the P-loop lysine (Lys49) and a conserved aspartate (Asp73) inactivate the kinase. Our studies fortify emerging evidence for an enzymatic RNA repair capacity in archaea and provide a new reagent for polynucleotide phosphorylation at high temperatures.  相似文献   

5.
RNA and DNA ligases catalyze the formation of a phosphodiester bond between the 5′-phosphate and 3′-hydroxyl ends of nucleic acids. In this work, we describe the ability of the thermophilic RNA ligase MthRnl from Methanobacterium thermoautotrophicum to recognize and modify the 3′-terminal phosphate of RNA and single-stranded DNA (ssDNA). This ligase can use an RNA 3′p substrate to generate an RNA 2′,3′-cyclic phosphate or convert DNA3′p to ssDNA3′pp5′A. An RNA ligase from the Thermus scotoductus bacteriophage TS2126 and a predicted T4 Rnl1-like protein from Thermovibrio ammonificans, TVa, were also able to adenylate ssDNA 3′p. These modifications of RNA and DNA 3′-phosphates are similar to the activities of RtcA, an RNA 3′-phosphate cyclase. The initial step involves adenylation of the enzyme by ATP, which is then transferred to either RNA 3′p or DNA 3′p to generate the adenylated intermediate. For RNA 3′pp5′A, the third step involves attack of the adjacent 2′ hydroxyl to generate the RNA 2′,3′-cyclic phosphate. These steps are analogous to those in classical 5′ phosphate ligation. MthRnl and TS2126 RNA ligases were not able to modify a 3′p in nicked double-stranded DNA. However, T4 DNA ligase and RtcA can use 3′-phosphorylated nicks in double-stranded DNA to produce a 3′-adenylated product. These 3′-terminal phosphate-adenylated intermediates are substrates for deadenylation by yeast 5′Deadenylase. Our findings that classic ligases can duplicate the adenylation and phosphate cyclization activity of RtcA suggests that they have an essential role in metabolism of nucleic acids with 3′-terminal phosphates.  相似文献   

6.
Programmed RNA breakage is an emerging theme underlying cellular responses to stress, virus infection and defense against foreign species. In many cases, site-specific cleavage of the target RNA generates 2′,3′ cyclic phosphate and 5′-OH ends. For the damage to be repaired, both broken ends must be healed before they can be sealed by a ligase. Healing entails hydrolysis of the 2′,3′ cyclic phosphate to form a 3′-OH and phosphorylation of the 5′-OH to form a 5′-PO4. Here, we demonstrate that a polynucleotide kinase-phosphatase enzyme from Clostridium thermocellum (CthPnkp) can catalyze both of the end-healing steps of tRNA splicing in vitro. The route of tRNA repair by CthPnkp can be reprogrammed by a mutation in the 3′ end-healing domain (H189D) that yields a 2′-PO4 product instead of a 2′-OH. Whereas tRNA ends healed by wild-type CthPnkp are readily sealed by T4 RNA ligase 1, the H189D enzyme generates ends that are spliced by yeast tRNA ligase. Our findings suggest that RNA repair enzymes can evolve their specificities to suit a particular pathway.  相似文献   

7.
Single-stranded DNA (ssDNA)-specific exonucleases (ssExos) are expected to be involved in a variety of DNA repair pathways corresponding to their cleavage polarities; however, the relationship between the cleavage polarity and the respective DNA repair pathways is only partially understood. To understand the cellular function of ssExos in DNA repair better, genes encoding ssExos were disrupted in Thermus thermophilus HB8 that seems to have only a single set of 5′–3′ and 3′–5′ ssExos unlike other model organisms. Disruption of the tthb178 gene, which was expected to encode a 3′–5′ ssExo, resulted in significant increase in the sensitivity to H2O2 and frequency of the spontaneous mutation rate, but scarcely affected the sensitivity to ultraviolet (UV) irradiation. In contrast, disruption of the recJ gene, which encodes a 5′–3′ ssExo, showed little effect on the sensitivity to H2O2, but caused increased sensitivity to UV irradiation. In vitro characterization revealed that TTHB178 possessed 3′–5′ ssExo activity that degraded ssDNAs containing deaminated and methylated bases, but not those containing oxidized bases or abasic sites. Consequently, we concluded that TTHB178 is a novel 3′–5′ ssExo that functions in various DNA repair systems in cooperation with or independently of RecJ. We named TTHB178 as T. thermophilus exonuclease I.  相似文献   

8.
RNA terminal phosphate cyclase catalyzes the ATP-dependent conversion of a 3′-phosphate RNA end to a 2′,3′-cyclic phosphate via covalent enzyme-(histidinyl-Nϵ)-AMP and RNA(3′)pp(5′)A intermediates. Here, we report that Escherichia coli RtcA (and its human homolog Rtc1) are capable of cyclizing a 2′-phosphate RNA end in high yield. The rate of 2′-phosphate cyclization by RtcA is five orders of magnitude slower than 3′-phosphate cyclization, notwithstanding that RtcA binds with similar affinity to RNA3′p and RNA2′p substrates. These findings expand the functional repertoire of RNA cyclase and suggest that phosphate geometry during adenylate transfer to RNA is a major factor in the kinetics of cyclization. RtcA is coregulated in an operon with an RNA ligase, RtcB, that splices RNA 5′-OH ends to either 3′-phosphate or 2′,3′-cyclic phosphate ends. Our results suggest that RtcA might serve an end healing function in an RNA repair pathway, by converting RNA 2′-phosphates, which cannot be spliced by RtcB, to 2′,3′-cyclic phosphates that can be sealed. The rtcBA operon is controlled by the σ54 coactivator RtcR encoded by an adjacent gene. This operon arrangement is conserved in diverse bacterial taxa, many of which have also incorporated the RNA-binding protein Ro (which is implicated in RNA quality control under stress conditions) as a coregulated component of the operon.  相似文献   

9.
Plant and fungal tRNA ligases are trifunctional enzymes that repair RNA breaks with 2′,3′-cyclic-PO4 and 5′-OH ends. They are composed of cyclic phosphodiesterase (CPDase) and polynucleotide kinase domains that heal the broken ends to generate the 3′-OH, 2′-PO4, and 5′-PO4 required for sealing by a ligase domain. Here, we use short HORNA>p substrates to determine, in a one-pot assay format under single-turnover conditions, the order and rates of the CPDase, kinase and ligase steps. The observed reaction sequence for the plant tRNA ligase AtRNL, independent of RNA length, is that the CPDase engages first, converting HORNA>p to HORNA2′p, which is then phosphorylated to pRNA2′p by the kinase. Whereas the rates of the AtRNL CPDase and kinase reactions are insensitive to RNA length, the rate of the ligase reaction is slowed by a factor of 16 in the transition from 10-mer RNA to 8-mer and further by eightfold in the transition from 8-mer RNA to 6-mer. We report that a single ribonucleoside-2′,3′-cyclic-PO4 moiety enables AtRNL to efficiently splice an otherwise all-DNA strand. Our characterization of a fungal tRNA ligase (KlaTrl1) highlights important functional distinctions vis à vis the plant homolog. We find that (1) the KlaTrl1 kinase is 300-fold faster than the AtRNL kinase; and (2) the KlaTrl1 kinase is highly specific for GTP or dGTP as the phosphate donor. Our findings recommend tRNA ligase as a tool to map ribonucleotides embedded in DNA and as a target for antifungal drug discovery.  相似文献   

10.
11.
When DNA breakage results in a 3′-PO4 terminus, the end is considered ‘dirty’ because it cannot prime repair synthesis by DNA polymerases or sealing by classic DNA ligases. The noncanonical ligase RtcB can guanylylate the DNA 3′-PO4 to form a DNA3′pp5′GOH cap. Here we show that DNA capping precludes end joining by classic ATP-dependent and NAD+-dependent DNA ligases, prevents template-independent nucleotide addition by mammalian terminal transferase, blocks exonucleolytic proofreading by Escherichia coli DNA polymerase II and inhibits proofreading by E. coli DNA polymerase III, while permitting templated DNA synthesis from the cap guanosine 3′-OH primer by E. coli DNA polymerase II (B family) and E. coli DNA polymerase III (C family). Human DNA polymerase β (X family) extends the cap primer predominantly by a single templated addition step. Cap-primed synthesis by templated polymerases embeds a pyrophosphate-linked ribonucleotide in DNA. We find that the embedded ppG is refractory to surveillance and incision by RNase H2.  相似文献   

12.
A method for the identification of the 5′-linked termini of ribosomal RNA is described. The method involves the phosphorylation of the nucleosides released from the 5′-linked termini after hydrolysis of the ribonucleic acid chain with alkali. The radioactive 5′-nucleotide derivatives are formed by a nucleoside phosphotransferase mediated phosphoryl transfer from (32P) p-nitrophenyl phosphate to the nucleosides. The sensitivity of the method allows the use of small amounts of ribosomal RNA.  相似文献   

13.
tRNA ligases are essential components of informational and stress-response pathways entailing repair of RNA breaks with 2′,3′-cyclic phosphate and 5′-OH ends. Plant and fungal tRNA ligases comprise three catalytic domains. Phosphodiesterase and kinase modules heal the broken ends to generate the 3′-OH, 2′-PO4, and 5′-PO4 required for sealing by the ligase. We exploit RNA substrates with different termini to define rates of individual steps or subsets of steps along the repair pathway of plant ligase AtRNL. The results highlight rate-limiting transactions, how repair is affected by active-site mutations, and how mutations are bypassed by RNA alterations. We gain insights to 2′-PO4 specificity by showing that AtRNL is deficient in transferring AMP to pRNAOH to form AppRNAOH but proficient at sealing pre-adenylylated AppRNAOH. This strategy for discriminating 2′-PO4 versus 2′-OH ends provides a quality-control checkpoint to ensure that only purposeful RNA breaks are sealed and to avoid nonspecific “capping” of 5′-PO4 ends.  相似文献   

14.
Desai KK  Raines RT 《Biochemistry》2012,51(7):1333-1335
The RNA ligase RtcB is conserved in all domains of life and is essential for tRNA maturation in archaea and metazoa. Here we show that bacterial and archaeal RtcB catalyze the GTP-dependent ligation of RNA with 3'-phosphate and 5'-hydroxyl termini. Reactions with analogues of RNA and GTP suggest a mechanism in which RtcB heals the 3'-phosphate terminus by forming a 2',3'-cyclic phosphate before joining it to the 5'-hydroxyl group of a second RNA strand. Thus, RtcB can ligate RNA cleaved by RNA endonucleases, which generate 2',3'-cyclic phosphate and then 3'-phosphate termini on one strand, and a 5'-hydroxyl terminus on another strand.  相似文献   

15.
Trl1 is an essential 827 amino acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two domains—an N-terminal ligase component and a C-terminal 5′-kinase/2′,3′-cyclic phosphodiesterase (CPD) component—that can function in tRNA splicing in vivo when expressed as separate polypeptides. To understand the structural requirements for the kinase-CPD domain, we performed an alanine scan of 30 amino acids that are conserved in Trl1 homologs from other fungi. We thereby identified four residues (Arg463, His515, Thr675 and Glu741) as essential for activity in vivo. Structure–function relationships at these positions, and at four essential or conditionally essential residues defined previously (Asp425, Arg511, His673 and His777), were clarified by introducing conservative substitutions. Biochemical analysis showed that lethal mutations of Asp425, Arg463, Arg511 and His515 in the kinase module abolished polynucleotide kinase activity in vitro. We report that a recently cloned 1104 amino acid Arabidopsis RNA ligase functions in lieu of yeast Trl1 in vivo and identify essential side chains in the ligase, kinase and CPD modules of the plant enzyme. The plant ligase, like yeast Trl1 but unlike T4 RNA ligase 1, requires a 2′-PO4 end for tRNA splicing in vivo.  相似文献   

16.
Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire.  相似文献   

17.
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya.  相似文献   

18.
DNA ligases, found in both prokaryotes and eukaryotes, covalently link the 3′-hydroxyl and 5′-phosphate ends of duplex DNA segments. This reaction represents a completion step for DNA replication, repair and recombination. It is well established that ligases are sensitive to mispairs present on the 3′ side of the ligase junction, but tolerant of mispairs on the 5′ side. While such discrimination would increase the overall accuracy of DNA replication and repair, the mechanisms by which this fidelity is accomplished are as yet unknown. In this paper, we present the results of experiments with Tth ligase from Thermus thermophilus HB8 and a series of nucleoside analogs in which the mechanism of discrimination has been probed. Using a series of purine analogs substituted in the 2 and 6 positions, we establish that the apparent base pair geometry is much more important than relative base pair stability and that major groove contacts are of little importance. This result is further confirmed using 5-fluorouracil (FU) mispaired with guanine. At neutral pH, the FU:G mispair on the 3′ side of a ligase junction is predominantly in a neutral wobble configuration and is poorly ligated. Increasing the solution pH increases the proportion of an ionized base pair approximating Watson–Crick geometry, substantially increasing the relative ligation efficiency. These results suggest that the ligase could distinguish Watson–Crick from mispaired geometry by probing the hydrogen bond acceptors present in the minor groove as has been proposed for DNA polymerases. The significance of minor groove hydrogen bonding interactions is confirmed with both Tth and T4 DNA ligases upon examination of base pairs containing the pyrimidine shape analog, difluorotoluene (DFT). Although DFT paired with adenine approximates Watson–Crick geometry, a minor groove hydrogen bond acceptor is lost. Consistent with this hypothesis, we observe that DFT-containing base pairs inhibit ligation when on the 3′ side of the ligase junction. The NAD+-dependent ligase, Tth, is more sensitive to the DFT analog on the unligated strand whereas the ATP-dependent T4 ligase is more sensitive to substitutions in the template strand. Electrophoretic gel mobility-shift assays demonstrate that the Tth ligase binds poorly to oligonucleotide substrates containing analogs with altered minor groove contacts.  相似文献   

19.
RtcB is an essential human tRNA ligase required for ligating the 2',3'‐cyclic phosphate and 5'‐hydroxyl termini of cleaved tRNA halves during tRNA splicing and XBP1 fragments during endoplasmic reticulum stress. Activation of XBP1 has been implicated in various human tumors including breast cancer. Here we present, for the first time, a homology model of human RtcB (hRtcB) in complex with manganese and covalently bound GMP built from the Pyrococcus horikoshii RtcB (bRtcB) crystal structure, PDB ID 4DWQA. The structure is analyzed in terms of stereochemical quality, folding reliability, secondary structure similarity with bRtcB, druggability of the active site binding pocket and its metal‐binding microenvironment. In comparison with bRtcB, loss of a manganese‐coordinating water and movement of Asn226 (Asn202 in 4DWQA) to form metal‐ligand coordination, demonstrates the uniqueness of the hRtcB model. Rotation of GMP leads to the formation of an additional metal‐ligand coordination (Mn‐O). Umbrella sampling simulations of Mn binding in wild type and the catalytically inactive C122A mutant reveal a clear reduction of Mn binding ability in the mutant, thus explaining the loss of activity therein. Our results furthermore clearly show that the GTP binding site of the enzyme is a well‐defined pocket that can be utilized as target site for in silico drug discovery.  相似文献   

20.
The segmented double-stranded (ds) RNA genome of the rotaviruses is replicated asymmetrically, with viral mRNA serving as the template for the synthesis of minus-strand RNA. Previous studies with cell-free replication systems have shown that the highly conserved termini of rotavirus gene 8 and 9 mRNAs contain cis-acting signals that promote the synthesis of dsRNA. Based on the location of the cis-acting signals and computer modeling of their secondary structure, the ends of the gene 8 or 9 mRNAs are proposed to interact in cis to form a modified panhandle structure that promotes the synthesis of dsRNA. In this structure, the last 11 to 12 nucleotides of the RNA, including the cis-acting signal that is essential for RNA replication, extend as a single-stranded tail from the panhandled region, and the 5′ untranslated region folds to form a stem-loop motif. To understand the importance of the predicted secondary structure in minus-strand synthesis, mutations were introduced into viral RNAs which affected the 3′ tail and the 5′ stem-loop. Analysis of the RNAs with a cell-free replication system showed that, in contrast to mutations which altered the structure of the 5′ stem-loop, mutations which caused complete or near-complete complementarity between the 5′ end and the 3′ tail significantly inhibited (≥10-fold) minus-strand synthesis. Likewise, incubation of wild-type RNAs with oligonucleotides which were complementary to the 3′ tail inhibited replication. Despite their replication-defective phenotype, mutant RNAs with complementary 5′ and 3′ termini were shown to competitively interfere with the replication of wild-type mRNA and to bind the viral RNA polymerase VP1 as efficiently as wild-type RNA. These results indicate that the single-strand nature of the 3′ end of rotavirus mRNA is essential for efficient dsRNA synthesis and that the specific binding of the RNA polymerase to the mRNA template is required but not sufficient for the synthesis of minus-strand RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号