首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Molecular Biology - The process of inflammation is the body’s natural defense response to the penetration of foreign substances and molecules from the outside. Many proteins, signaling...  相似文献   

4.
5.
6.
染色质重塑是真核生物表观遗传调控的重要方式.通过对染色质物理结构的调节,染色质重塑在高等动植物干细胞的自我更新及分化、器官和个体发育以及肿瘤发生等多种生物学过程中发挥重要作用.近年来,高等动植物染色质重塑方面的研究已经成为表观遗传学研究领域的热点.本综述总结近年来有关高等动植物染色质重塑的重要研究报道,介绍了染色质重塑的结构机制、分析比较了高等动植物染色质重塑复合体的组成及其生物学功能的多样性,并着重综述了高等植物SWI/SNF染色质重塑复合体各组分在调控植物发育与逆境生长等方面的功能,以期为今后植物中染色质重塑的研究提供启示.  相似文献   

7.
8.
9.
Chromatin-remodeling complexes regulate access to nucleosomal DNA by mobilizing nucleosomes in an ATP-dependent manner. In this study, we find that chromatin remodeling by SWI/SNF and ISW2 involves DNA translocation inside nucleosomes two helical turns from the dyad axis at superhelical location-2. DNA translocation at this internal position does not require the propagation of a DNA twist from the site of translocation to the entry/exit sites for nucleosome movement. Nucleosomes are moved in 9- to 11- or approximately 50-base-pair increments by ISW2 or SWI/SNF, respectively, presumably through the formation of DNA loops on the nucleosome surface. Remodeling by ISW2 but not SWI/SNF requires DNA torsional strain near the site of translocation, which may work in conjunction with conformational changes of ISW2 to promote nucleosome movement on DNA. The difference in step size of nucleosome movement by SWI/SNF and ISW2 demonstrates how SWI/SNF may be more disruptive to nucleosome structure than ISW2.  相似文献   

10.
11.
12.
13.
14.
15.
Synthesis of the modified thymine base beta-D-glucosyl-hydroxymethyluracil, or J, within telomeric DNA of Trypanosoma brucei correlates with the bloodstream-form-specific epigenetic silencing of telomeric variant surface glycoprotein genes involved in antigenic variation. The mechanism of developmental and telomeric-specific regulation of J synthesis is unknown. We have previously identified a J binding protein (JBP1) involved in propagating J synthesis. We have now identified a homolog of JBP1, JBP2, containing a domain related to the SWI2/SNF2 family of chromatin remodeling proteins that is upregulated in bloodstream form cells and interacts with nuclear chromatin. We show that expression of JBP2 in procyclic form cells leads to de novo J synthesis within telomeric regions of the chromosome and that this activity is inhibited after mutagenesis of conserved residues critical for SWI2/SNF2 function. We propose a model in which chromatin remodeling by JBP2 regulates the initial sites of J synthesis within bloodstream form trypanosome DNA, with further propagation and maintenance of J by JBP1.  相似文献   

16.
17.
18.
19.
Androgen receptor (AR) activity is required for prostate cancer development and progression. Thus, there is a major impetus to understand the regulation of AR action. We and others have previously shown that AR transactivation potential is dependent on the presence of an active SWI/SNF chromatin remodeling complex. However, the mechanisms underlying SWI/SNF regulation of the AR remained unsolved. We show here that the BAF57 subunit, an accessory component of the remodeling complex, is a critical regulator of AR function. We show that BAF57 is expressed in the luminal epithelia of the prostate and is required for AR-dependent transactivation in prostatic adenocarcinoma cells. Our data reveal that BAF57 can directly bind to the AR and is recruited to endogenous AR targets upon ligand activation. Loss of BAF57 or inhibition of BAF57 function severely compromised AR activity, as observed with both exogenous and endogenous AR targets. Rescue of BAF57 function restored AR activity, thus demonstrating a specific requirement of BAF57 for AR activity. This action of BAF57 proved to be dependent on SWI/SNF ATPase function. BAF57 has previously been implicated in nuclear receptor coactivator function, and we show that, although BAF57 facilitated coactivator activity, only a selected subset required BAF57 for coactivator function. Lastly, we demonstrate that both BAF57 and BRM are required for the proliferation of AR-dependent prostatic adenocarcinoma cells. In summary, these findings identify BAF57 as a critical modulator of the AR that is capable of altering AR activity, coactivator function, and AR-dependent proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号