首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(A) polymerases (PAPs) are found in most living organisms and have important roles in RNA function and metabolism. Here, we report the crystal structure of human PAPD1, a noncanonical PAP that can polyadenylate RNAs in the mitochondria (also known as mtPAP) and oligouridylate histone mRNAs (TUTase1). The overall structure of the palm and fingers domains is similar to that in the canonical PAPs. The active site is located at the interface between the two domains, with a large pocket that can accommodate the substrates. The structure reveals the presence of a previously unrecognized domain in the N-terminal region of PAPD1, with a backbone fold that is similar to that of RNP-type RNA binding domains. This domain (named the RL domain), together with a β-arm insertion in the palm domain, contributes to dimerization of PAPD1. Surprisingly, our mutagenesis and biochemical studies show that dimerization is required for the catalytic activity of PAPD1.  相似文献   

2.
3.
Huntington''s disease (HD) is a neurodegenerative disorder characterized by progressive neuronal death in the basal ganglia and cortex. Although increasing evidence supports a pivotal role of mitochondrial dysfunction in the death of patients'' neurons, the molecular bases for mitochondrial impairment have not been elucidated. We provide the first evidence of an abnormal activation of the Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNip3) in cells expressing mutant Huntingtin. In this study, we show an abnormal accumulation and dimerization of BNip3 in the mitochondria extracted from human HD muscle cells, HD model cell cultures and brain tissues from HD model mice. Importantly, we have shown that blocking BNip3 expression and dimerization restores normal mitochondrial potential in human HD muscle cells. Our data shed light on the molecular mechanisms underlying mitochondrial dysfunction in HD and point to BNip3 as a new potential target for neuroprotective therapy in HD.  相似文献   

4.
Polyadenylation of mitochondrial RNAs in higher eukaryotic organisms have diverse effects on their function and metabolism. Polyadenylation completes the UAA stop codon of a majority of mitochondrial mRNAs in mammals, regulates the translation of the mRNAs, and has diverse effects on their stability. In contrast, polyadenylation of most mitochondrial mRNAs in plants leads to their degradation, consistent with the bacterial origin of this organelle. PAPD1 (mtPAP, TUTase1), a noncanonical poly(A) polymerase (ncPAP), is responsible for producing the poly(A) tails in mammalian mitochondria. The crystal structure of human PAPD1 was reported recently, offering molecular insights into its catalysis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.  相似文献   

5.
6.
Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson''s disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased α-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and α-synclein aggregation.  相似文献   

7.
Tipranavir (TPV), a protease inhibitor (PI) inhibiting the enzymatic activity and dimerization of HIV-1 protease, exerts potent activity against multi-PI-resistant HIV-1 isolates. When a mixture of 11 multi-PI-resistant (but TPV-sensitive) clinical isolates (HIV11MIX), which included HIVB and HIVC, was selected against TPV, HIV11MIX rapidly (by 10 passages [HIV11MIXP10]) acquired high-level TPV resistance and replicated at high concentrations of TPV. HIV11MIXP10 contained various amino acid substitutions, including I54V and V82T. The intermolecular FRET-based HIV-1 expression assay revealed that TPV''s dimerization inhibition activity against cloned HIVB (cHIVB) was substantially compromised. The introduction of I54V/V82T into wild-type cHIVNL4-3 (cHIVNL4-3I54V/V82T) did not block TPV''s dimerization inhibition or confer TPV resistance. However, the introduction of I54V/V82T into cHIVB (cHIVBI54V/V82T) compromised TPV''s dimerization inhibition and cHIVBI54V/V82T proved to be significantly TPV resistant. L24M was responsible for TPV resistance with the cHIVC genetic background. The introduction of L24M into cHIVNL4-3 (cHIVNL4-3L24M) interfered with TPV''s dimerization inhibition, while L24M increased HIV-1''s susceptibility to TPV with the HIVNL4-3 genetic background. When selected with TPV, cHIVNL4-3I54V/V82T most readily developed TPV resistance and acquired E34D, which compromised TPV''s dimerization inhibition with the HIVNL4-3 genetic background. The present data demonstrate that certain amino acid substitutions compromise TPV''s dimerization inhibition and confer TPV resistance, although the loss of TPV''s dimerization inhibition is not always associated with significantly increased TPV resistance. The findings that TPV''s dimerization inhibition is compromised with one or two amino acid substitutions may explain at least in part why the genetic barrier of TPV against HIV-1''s development of TPV resistance is relatively low compared to that of darunavir.  相似文献   

8.
Ryk pseudokinase receptors act as important transducers of Wnt signals, particularly in the nervous system. Little is known, however, of their interactions at the cell surface. Here, we show that a Drosophila Ryk family member, DERAILED (DRL), forms cell surface homodimers and can also heterodimerize with the two other fly Ryks, DERAILED-2 and DOUGHNUT ON 2. DERAILED homodimerization levels increase significantly in the presence of its ligand, WNT5. In addition, DERAILED displays ligand-independent dimerization mediated by a motif in its transmembrane domain. Increased dimerization of DRL upon WNT5 binding or upon the replacement of DERAILED''s extracellular domain with the immunoglobulin Fc domain results in an increased recruitment of the Src family kinase SRC64B, a previously identified downstream pathway effector. Formation of the SRC64B/DERAILED complex requires SRC64B''s SH2 domain and DERAILED''s PDZ-binding motif. Mutations in DERAILED''s inactive tyrosine kinase-homologous domain also disrupt the formation of DERAILED/SRC64B complexes, indicating that its conformation is likely important in facilitating its interaction with SRC64B. Finally, we show that DERAILED''s function during embryonic axon guidance requires its Wnt-binding domain, a putative juxtamembrane extracellular tetrabasic cleavage site, and the PDZ-binding domain, indicating that DERAILED''s activation involves a complex set of events including both dimerization and proteolytic processing.  相似文献   

9.
10.
Almost all eukaryotic mRNAs acquire a poly(A) tail at the 3′-end by a concerted RNA processing event: cleavage and polyadenylation. The canonical PAP, PAPα, was considered the only nuclear PAP involved in general polyadenylation of mRNAs. A phosphoinositide-modulated nuclear PAP, Star-PAP, was then reported to regulate a select set of mRNAs in the cell. In addition, several non-canonical PAPs have been identified with diverse cellular functions. Further, canonical PAP itself exists in multiple isoforms thus illustrating the diversity of PAPs. In this review, we compare two nuclear PAPs, Star-PAP and PAPα with a general overview of PAP diversity in the cell. Emerging evidence suggests distinct niches of target pre-mRNAs for the two PAPs and that modulation of these PAPs regulates distinct cellular functions.  相似文献   

11.
The biochemical and structural characterization of ubiquitin-conjugating enzymes (E2s) over the past 30 years has fostered important insights into ubiquitin transfer mechanisms. Although many of these enzymes share high sequence and structural conservation, their functional roles in the cell are decidedly diverse. Here, we report that the mono-ubiquitinating E2 UBE2W forms a homodimer using two distinct protein surfaces. Dimerization is primarily driven by residues in the ß-sheet region and Loops 4 and 7 of the catalytic domain. Mutation of two residues in the catalytic domain of UBE2W is capable of disrupting UBE2W homodimer formation, however, we find that dimerization of this E2 is not required for its ubiquitin transfer activity. In addition, residues in the C-terminal region, although not compulsory for the dimerization of UBE2W, play an ancillary role in the dimer interface. In all current E2 structures, the C-terminal helix of the UBC domain is at least 15Å away from the primary dimerization surface shown here for UBE2W. This leads to the proposal that the C-terminal region of UBE2W adopts a noncanonical position that places it closer to the UBC ß-sheet, providing the first indication that at least some E2s adopt C-terminal conformations different from the canonical structures observed to date.  相似文献   

12.
The unparalleled peroxisome-to-mitochondrion mistargeting of alanine:glyoxylate aminotransferase (AGT) in the hereditary disease primary hyperoxaluria type 1 is caused by the combined presence of a common Pro11 --> Leu polymorphism and a disease-specific Gly170 --> Arg mutation. The Pro11 --> Leu replacement generates a functionally weak N-terminal mitochondrial targeting sequence (MTS), the efficiency of which is increased by the additional presence of the Gly170 --> Arg replacement. AGT dimerization is inhibited in the combined presence of both replacements but not when each is present separately. In this paper we have attempted to identify the structural determinants of AGT dimerization and mitochondrial mistargeting. Unlike most MTSs, the polymorphic MTS of AGT has little tendency to adopt an alpha-helical conformation in vitro. Nevertheless, it is able to target efficiently a monomeric green fluorescent (GFP) fusion protein, but not dimeric AGT, to mitochondria in transfected COS-1 cells. Increasing the propensity of this MTS to fold into an alpha-helix, by making a double Pro11 --> Leu + Pro10 --> Leu replacement, enabled it to target both GFP and AGT efficiently to mitochondria. The double Pro11 --> Leu + Pro10 --> Leu replacement retarded AGT dimerization in vitro as did the disease-causing double Pro11 --> Leu + Gly170 --> Arg replacement. These data suggest that N-terminal alpha-helix formation is more important for maintaining AGT in a conformation (i. e. monomeric) compatible with mitochondrial import than it is for the provision of mitochondrial targeting information. The parallel effects of the Pro10 --> Leu and Gly170 --> Arg replacements on the dimerization and intracellular targeting of polymorphic AGT (containing the Pro11 --> Leu replacement) raise the possibility that they might achieve their effects by the same mechanism.  相似文献   

13.
Mutations of human mitochondrial transfer RNA (tRNA) are implicated in a variety of multisystemic diseases. The most prevalent pathogenic mitochondrial mutation is the A3243G substitution within the gene for tRNA(Leu(UUR)). Here we describe the pronounced structural change promoted by this mutation. The A3243G mutation induces the formation of a tRNA dimer that strongly self-associates under physiological conditions. The dimerization interface in the mutant tRNA is a self-complementary hexanucleotide in the D-stem, a particularly weak structural element within tRNA(Leu(UUR)). Aminoacylation of the A3243G mutant is significantly attenuated, and mutational studies indicate that dimerization is partially responsible for the observed loss of function. The disruption of a conserved tertiary structural contact also contributes to the functional defect. The pathogenic mutation is proposed to interfere with the cellular function of human mitochondrial tRNA(Leu(UUR)) by destabilizing the native structure and facilitating the formation of a dimeric complex with low biological activity.  相似文献   

14.
The nonapeptide fragment of the HLA-DR molecule, located in the exposed loop of the beta chain (164-172) and having the sequence VPRSGEVYT, suppresses the immune response. On the basis of the three-dimensional structure of the HLA-DR superdimer, we designed new dimeric analogs in which the VPRSGEVYT peptides are linked through their N-termini by poly(ethylene glycol) linkers of different lengths and are able to mimic the dimeric nature of the immunosuppressive fragments of HLA class II molecules. The analogs were synthesized using standard solid-phase peptide synthesis protocols. The dimerization was achieved by cross-linking the N-terminal positions of the peptides, attached to an MBHA resin, with alpha,omega-bis(acetic acid) poly(ethylene glycol), activated by esterification with pentafluorophenol. Our results demonstrate that the amino-terminal dimerization of the peptide results in enhanced immunosuppressive activity and that the potency of the conjugates depends on the length of the poly(ethylene glycol) linker. MS/MS analysis of the obtained dimeric peptides is also presented.  相似文献   

15.
16.
Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn SH2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide‐bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand.  相似文献   

17.
18.
The RNA from the mitochondrial fraction of animal cells contains a polyadenylic acid sequence, approximately 55 nucleotides in length, which migrates at about 4 S in gel electrophoresis and which is attached to high molecular weight RNA. The experiments reported here indicate that: (a) the 4 S poly(A) sequence is found only in the mitochondrial fraction; (b) the RNA containing 4 S poly(A) is located within structures (presumably mitochondria) which protect it from pancreatic ribonuclease; (c) no RNA containing the longer poly(A) of nuclear origin appears to be located in mitochondria; (d) the 4 S poly(A), but not the longer poly(A), is attached to RNA which hybridizes to mitochondrial DNA; and (e) this poly(A) sequence is located at the 3′ end of the RNA molecule.The poly(A)-containing RNA can be isolated by affinity to oligodeoxyribothymidylic acid cellulose and resolved into approximately eight distinct species by acrylamide gel electrophoresis. These may correspond to individual mitochondrial messenger RNA molecules.  相似文献   

19.
Amongst several forms of glia-neuronal communication, glia-synaptic interaction appears particularly interesting in the light of the well-known examples of two-way signaling between neurons and astrocytes. We review recent structural and physiological evidence showing that the structural correlate of glia-synaptic interaction is the peripheral astrocyte process (PAP) positioned next to the synaptic cleft. The structural and functional properties of these processes suggest that the PAP represents a separate astroglial compartment, in particular since it is characterized by the restricted localization of the actin-binding ERM protein ezrin. The structural properties of PAPs and this protein form the basis of rapid morphological changes of PAPs. The physiological relevance of PAP plasticity is illustrated by the example of the suprachiasmatic nucleus, where astrocytes display a high degree of activity-dependent plasticity reflecting circadian time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号