首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cofilin, a key regulator of actin filament dynamics, binds to G- and F-actin and promotes actin filament turnover by stimulating depolymerization and severance of actin filaments. In this study, cytochalasin D (CytoD), a widely used inhibitor of actin dynamics, was found to act as an inhibitor of the G-actin-cofilin interaction by binding to G-actin. CytoD also inhibited the binding of cofilin to F-actin and decreased the rate of both actin polymerization and depolymerization in living cells. CytoD altered cellular F-actin organization but did not induce net actin polymerization or depolymerization. These results suggest that CytoD inhibits actin filament dynamics in cells via multiple mechanisms, including the well-known barbed-end capping mechanism and as shown in this study, the inhibition of G- and F-actin binding to cofilin.  相似文献   

2.
We tested the hypothesis that the equilibrium between F- and G-actin in endothelial cells modulates the integrity of the actin cytoskeleton and is important for the maintenance of endothelial barrier functions in vivo and in vitro. We used the actin-depolymerizing agent cytochalasin D and jasplakinolide, an actin filament (F-actin) stabilizing and promoting substance, to modulate the actin cytoskeleton. Low doses of jasplakinolide (0.1 microM), which we have previously shown to reduce the permeability-increasing effect of cytochalasin D, had no influence on resting permeability of single-perfused mesenteric microvessels in vivo as well as on monolayer integrity. The F-actin content of cultured endothelial cells remained unchanged. In contrast, higher doses (10 microM) of jasplakinolide increased permeability (hydraulic conductivity) to the same extent as cytochalasin D and induced formation of intercellular gaps in cultured myocardial endothelial (MyEnd) cell monolayers. This was accompanied by a 34% increase of F-actin and pronounced disorganization of the actin cytoskeleton in MyEnd cells. Furthermore, we tested whether an increase of cAMP by forskolin and rolipram would prevent the cytochalasin D-induced barrier breakdown. Conditions that increase intracellular cAMP failed to block the cytochalasin D-induced permeability increase in vivo and the reduction of vascular endothelial cadherin-mediated adhesion in vitro. Taken together, these data support the hypothesis that the state of polymerization of the actin cytoskeleton is critical for maintenance of endothelial barrier functions and that both depolymerization by cytochalasin D and hyperpolymerization of actin by jasplakinolide resulted in an increase of microvessel permeability in vivo. However, cAMP, which is known to support endothelial barrier functions, seems to work by mechanisms other than stabilizing F-actin.  相似文献   

3.
4.
Effects of cytochalasins on actin polymerization state in living cells were measured using fluorimetry of TRITC-phalloidin bound to F-actin. Normal (3T3) and tumour (SV-3T3, B16 melanoma, and Ehrlich ascites) cells were treated with cytochalasin B and cytochalasin D (1 microgram/ml). Three effects of cytochalasins were demonstrated--depolymerization of F-actin, promotion of polymerization, and redistribution of actin without change in polymerization state. Occurrence of a given effect was dependent on cell type, cell density, cytochalasin concentration and type. This indicates that cells from different lines, and even the same cells in different culture conditions may differ significantly in their state of actin polymerization, which we suppose is the cause of their different reactions to cytochalasins. Accordingly, caution should be taken in generalizing the results concerning the effect of cytochalasis on the polymerization state of actin.  相似文献   

5.
A variety of mechanisms have been proposed for the regulation of ion channel molecules. As integral membrane proteins, ion channels may interact with the cytoskeleton. Regulation of channels by the actin network may therefore be important. In the present study we used cytochalasin D and exogenous actin to test this possibility. The Cl channel of the apical membrane of renal proximal epithelium was detected in its active state after prolonged depolarization. Within 6 sec after its addition, cytochalasin D (0.05 g/ml) significantly decreased the number of open channels and mean open probability (NPo) of the Cl channel. Colchicine (1 mm), which affects microtubules, did not influence channel activation. Cytochalasin D is known to not only disrupt the F-actin network but to inhibit polymerization of F-actin as well. The latter effect is also produced by DNaseI. Cytochalasin D, but not DNaseI, inactivated Cl channels in cell-free membrane patches, suggesting that cytochalasin D inactivated the channel by disrupting the actin network. Cytochalasin D appeared to specifically affect the channel, as opposed to membrane permeability, since only the activated whole-cell Cl currents were altered by cytochalasin D. Addition of actin polymer, but not actin monomer, reactivated the cytochalasin-D-depressed channel. Thus, repair of the disrupted F-actin network with actin polymer apparently restored the activity and number of open Cl channels. We therefore conclude that the F-actin network interacts with and possibly regulates the Cl channel of renal proximal tubule epithelia.We would like to thank T. Tamatsukuri for technical support. This study was presented to the American Society of Nephrology, Baltimore, 1991.  相似文献   

6.
The effect of novel cytotoxic marine macrolide, amphidinolide H (Amp-H), on actin dynamics was investigated in vitro. Amp-H attenuated actin depolymerization induced by diluting F-actin. This effect remained after washing out of unbound Amp-H by filtration. In the presence of either Amp-H or phalloidin, lag phase, which is the rate-limiting step of actin polymerization, was shortened. Phalloidin decreased the polymerization-rate whereas Amp-H did not. Meanwhile, the effects of both compounds were the same when barbed end of actin was capped by cytochalasin D. Quartz crystal microbalance system revealed interaction of Amp-H with G-actin and F-actin. Amp-H also enhanced the binding of phalloidin to F-actin. We concluded that Amp-H stabilizes actin in a different manner from that of phalloidin and serves as a novel pharmacological tool for analyzing actin-mediated cell function.  相似文献   

7.
Risher WC  Eroglu C 《Matrix biology》2012,31(3):170-177
Thrombospondins (TSPs) are a family of large, oligomeric multidomain glycoproteins that participate in a variety of biological functions as part of the extracellular matrix (ECM). Through their associations with a number of binding partners, TSPs mediate complex cell-cell and cell-matrix interactions in such diverse processes as angiogenesis, inflammation, osteogenesis, cell proliferation, and apoptosis. It was recently shown in the developing central nervous system (CNS) that TSPs promote the formation of new synapses, which are the unique cell-cell adhesions between neurons in the brain. This increase in synaptogenesis is mediated by the interaction between astrocyte-secreted TSPs and their neuronal receptor, calcium channel subunit α2δ-1. The cellular and molecular mechanisms that underlie induction of synaptogenesis via this interaction are yet to be fully elucidated. This review will focus on what is known about TSP and synapse formation during development, possible roles for TSP following brain injury, and what the previously established actions of TSP in other biological tissues may tell us about the mechanisms underlying TSP's functions in CNS synaptogenesis.  相似文献   

8.
Abstract: To investigate a possible function of the nervous tissuespecific protein kinase C substrate B-50/GAP-43 in regulati of the dynamics of the submembranous cytoskeleton. we studii the interaction between purified 6–50 and actin. Both the phosphorylated and dephosphorylated forms of 8–50 cosedi-mented with filamentous actin (F-actin) in a Ca2+-independent manner. Neither 6–50 nor phospho-6–50 had any effect on the kinetics of actin polymerization and on the critical concentration at steady state, as measured using pyrenylated actin. tight scattering of F-actin samples was not increased in the presence of 550, suggesting that 550 does not bundle actin filaments. The number of actin filaments, determined by [3H]cytochalasin B binding, was not affected by either phospho- or dephospho-B-50, indicating that 550 has neither a severing nor a capping effect. These observations were confirmed by electron microscopic evaluation of negatively stained F-actin samples, which did not reveal any structural changes in the actin meshwork on addition of 6–50, We conclude that 6–50 is an actin-binding protein that does not directly affect actin dynamics.  相似文献   

9.
The actin cytoskeleton has been shown to be involved in the regulation of sodium-selective channels in non-excitable cells. However, the molecular mechanisms underlying the changes in channel function remain to be defined. In the present work, inside-out patch experiments were employed to elucidate the role of submembranous actin dynamics in the control of sodium channels in human myeloid leukemia K562 cells. We found that the application of cytochalasin D to the cytoplasmic surface of membrane fragments resulted in activation of non-voltage-gated sodium channels of 12 picosiemens conductance. Similar effects could be evoked by addition of the actin-severing protein gelsolin to the bath cytosol-like solution containing 1 microm [Ca(2+)](i). The sodium channel activity induced by disassembly of submembranous microfilaments with cytochalasin D or gelsolin could be abolished by intact actin added to the bath cytosol-like solution in the presence of 1 mm MgCl(2) to induce actin polymerization. In the absence of MgCl(2), addition of intact actin did not abolish the channel activity. Moreover, the sodium currents were unaffected by heat-inactivated actin or by actin whose polymerizability was strongly reduced by cleavage with specific Escherichia coli A2 protease ECP32. Thus, the inhibitory effect of actin on channel activity was observed only under conditions promoting rapid polymerization. Taken together, our data show that sodium channels are directly controlled by dynamic assembly and disassembly of submembranous F-actin.  相似文献   

10.
Here we examine the contribution of actin dynamics to the architecture and pH of the Golgi complex. To this end, we have used toxins that depolymerize (cytochalasin D, latrunculin B, mycalolide B, and Clostridium botulinum C2 toxin) or stabilize (jasplakinolide) filamentous actin. When various clonal cell lines were examined by epifluorescence microscopy, all of these actin toxins induced compaction of the Golgi complex. However, ultrastructural analysis by transmission electron microscopy and electron tomography/three-dimensional modelling of the Golgi complex showed that F-actin depolymerization first induces perforation/fragmentation and severe swelling of Golgi cisternae, which leads to a completely disorganized structure. In contrast, F-actin stabilization results only in cisternae perforation/fragmentation. Concomitantly to actin depolymerization-induced cisternae swelling and disorganization, the intra-Golgi pH significantly increased. Similar ultrastructural and Golgi pH alkalinization were observed in cells treated with the vacuolar H+ -ATPases inhibitors bafilomycin A1 and concanamycin A. Overall, these results suggest that actin filaments are implicated in the preservation of the flattened shape of Golgi cisternae. This maintenance seems to be mediated by the regulation of the state of F-actin assembly on the Golgi pH homeostasis.  相似文献   

11.

Background

ADF/cofilin proteins are key regulators of actin dynamics. Their function is inhibited by LIMK-mediated phosphorylation at Ser-3. Previous in vitro studies have shown that dependent on its concentration, cofilin either depolymerizes F-actin (at low cofilin concentrations) or promotes actin polymerization (at high cofilin concentrations).

Methodology/Principal Findings

We found that after in vivo cross-linking with different probes, a cofilin oligomer (65 kDa) could be detected in platelets and endothelial cells. The cofilin oligomer did not contain actin. Notably, ADF that only depolymerizes F-actin was present mainly in monomeric form. Furthermore, we found that formation of the cofilin oligomer is regulated by Ser-3 cofilin phosphorylation. Cofilin but not phosphorylated cofilin was present in the endogenous cofilin oligomer. In vitro, formation of cofilin oligomers was drastically reduced after phosphorylation by LIMK2. In endothelial cells, LIMK-mediated cofilin phosphorylation after thrombin-stimulation of EGFP- or DsRed2-tagged cofilin transfected cells reduced cofilin aggregate formation, whereas inhibition of cofilin phosphorylation after Rho-kinase inhibitor (Y27632) treatment of endothelial cells promoted formation of cofilin aggregates. In platelets, cofilin dephosphorylation after thrombin-stimulation and Y27632 treatment led to an increased formation of the cofilin oligomer.

Conclusion/Significance

Based on our results, we propose that an equilibrium exists between the monomeric and oligomeric forms of cofilin in intact cells that is regulated by cofilin phosphorylation. Cofilin phosphorylation at Ser-3 may induce conformational changes on the protein-protein interacting surface of the cofilin oligomer, thereby preventing and/or disrupting cofilin oligomer formation. Cofilin oligomerization might explain the dual action of cofilin on actin dynamics in vivo.  相似文献   

12.
Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.  相似文献   

13.
Cytochalasin inhibits the rate of elongation of actin filament fragments   总被引:41,自引:22,他引:19  
Submicromolar concentrations of cytochalasin inhibit the rate of assembly of highly purified dictyostelium discoideum actin, using a cytochalasin concentration range in which the final extent of assembly is minimally affected. Cytochalasin D is a more effective inhibitor than cytochalasin B, which is in keeping with the effects that have been reported on cell motility and with binding to a class of high-affinity binding sites from human erythrocyte membranes (Lin and Lin. 1978. J. Biol. CHem. 253:1415; Lin and Lin. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:2345); 5x10(-7) M cytochalasin B lowers it to 70 percent of the control value, whereas 10(-7) M cytochalasin B lowers the rate to 25 percent. Fragments of F-actin were used to increase the rate of assembly fivefold by providing more filament ends on to which monomers could add. Under these conditions, cytochalasin has an even more dramatic effect on the assembly rate; the concentrations of cytochalasin B and cytochalasin D required for half-maximal inhibition are 2x10(-7) M and 10(-8) M, respectively. The assembly rate is most sensitive to cytochalasin when actin assembly is carried out in the absence of ATP (with 3 mM ADP present to stabilize the actin). In this case, the concentrations of cytochalasin B and cytochalasin D required for half-maximal inhibition are 4x10(-8) M and 1x10(-9) M, respectively. A scatchard plot has been obtained using [(3)H]cytochalasin B binding to F-actin in the absence of ATP. The K(d) from this plot (approximately 4x10(-8) M) agrees well with the concentration of cytochalasin B required for half-maximal inhibition of the rate of assembly under these conditions. The number of cytochalasin binding sites is roughly one per F-actin filament, suggesting that cytochalasin has a specific action on actin filament ends.  相似文献   

14.
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 ± 0.1 in the dark to 2.1 ± 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark.Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 μm from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+.To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.  相似文献   

15.
Cytochalasin D strongly inhibits the faster components in the reactions of actin filament depolymerization and elongation in the presence of 10 mM Tris-Cl-, pH 7.8, 0.2 mM dithiothreitol, 1 mM MgCl2, 0.1 mM CaCl2, and 0.2 mM ATP or ADP. Assuming an exclusive and total capping of the barbed end by the drug, the kinetic parameters derived at saturation by cytochalasin D refer to the pointed end and are 10-15-fold lower than at the barbed end. In ATP, the critical concentration increases with cytochalasin D up to 12-fold its value when both ends are free; as a result of the lowering of the free energy of nucleation by cytochalasin D, short oligomers of F-actin exist just above and below the critical concentration. Cytochalasin D interacts strongly with the barbed ends independently of the ADP-G-actin concentration (K = 0.5 nM-1). In contrast, the affinity of cytochalasin D decreases cooperatively with increasing ATP-G-actin concentration. These data are equally well accounted for by two different models: either cytochalasin D binds very poorly to ATP-capped filament ends whose proportion increases with actin concentration, or cytochalasin D binds equally well to ATP-ends and ADP-ends and also binds to actin dimers in ATP but not in ADP. A linear actin concentration dependence of the rate of growth was found at the pointed end, consistent with the virtual absence of an ATP cap at that end.  相似文献   

16.
The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.  相似文献   

17.
I. Löw  P. Dancker 《BBA》1976,430(2):366-374
Cytochalasin B stimulated polymerization and decreased the concentration of G-actin remaining in equilibrium with F-actin filaments. Polymerization in the presence of cytochalasin B gave rise to a smaller increase of viscosity but to the same increase in light scattering, compared to polymerization in the absence of cytochalasin B. Cytochalasin B reduced the viscosity of F-actin and caused the appearance of ATP hydrolysis by F-actin. The cytochalasin B-induced ATPase activity was inhibited by concentrations of KCl higher than 50 mM. The cytochalasin B-induced ATPase activity was enhanced by ethyleneglycol bis(α-aminoethyl ether)-N,N′-tetraacetic acid and reduced by MgCl2 at concentrations higher than 0.75 mM. The findings suggest that the stability of actin filaments is reduced by cytochalasin B.  相似文献   

18.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoan parasite Leishmania donovani. The molecular mechanism involved in internalization of Leishmania is poorly understood. The entry of Leishmania involves interaction with the plasma membrane of host cells. We have previously demonstrated the requirement of host membrane cholesterol in the binding and internalization of L. donovani into macrophages. In the present work, we explored the role of the host actin cytoskeleton in leishmanial infection. We observed a dose-dependent reduction in the attachment of Leishmania promastigotes to host macrophages upon destabilization of the actin cytoskeleton by cytochalasin D. This is accompanied by a concomitant reduction in the intracellular amastigote load. We utilized a recently developed high resolution microscopy-based method to quantitate cellular F-actin content upon treatment with cytochalasin D. A striking feature of our results is that binding of Leishmania promastigotes and intracellular amastigote load show close correlation with cellular F-actin level. Importantly, the binding of Escherichia coli remained invariant upon actin destabilization of host cells, thereby implying specific involvement of the actin cytoskeleton in Leishmania infection. To the best of our knowledge, these novel results constitute the first comprehensive demonstration on the specific role of the host actin cytoskeleton in Leishmania infection. Our results could be significant in developing future therapeutic strategies to tackle leishmaniasis.  相似文献   

19.
Fluid flow stress (FSS) is a major mechanical stress that induces bone remodeling upon orthodontic tooth movement, whereas CCN family protein 2 (CCN2) is a potent regenerator of bone defects. In this study, we initially evaluated the effect of laminar FSS on Ccn2 expression and investigated its mechanism in osteoblastic MC3T3-E1 cells. The Ccn2 expression was drastically induced by uniform FSS in an intensity dependent manner. Of note, the observed effect was inhibited by a Rho kinase inhibitor Y27632. Moreover, the inhibition of actin polymerization blocked the FSS-induced activation of Ccn2, whereas inducing F-actin formation using cytochalasin D and jasplakinolide enhanced Ccn2 expression in the same cells. Finally, F-actin formation was found to induce osteoblastic differentiation. In addition, activation of cyclic AMP-dependent kinase, which inhibits Rho signaling, abolished the effect of FSS. Collectively, these findings indicate the critical role of actin polymerization and Rho signaling in CCN2 induction and bone remodeling provoked by FSS.  相似文献   

20.
We have previously shown, using jasplakinolide, that stabilization of the actin cytoskeleton enhanced apoptosis induced upon cytokine withdrawal (Posey and Bierer [1999] J. Biol. Chem. 274:4259-4265). It remained possible, however, that a disruption in the regulation of actin dynamics, and not simply F-actin stabilization, was required to affect the transduction of an apoptotic signal. We have now tested the effects of cytochalasin D, a well-characterized agent that promoted actin depolymerization. Actin depolymerization did not affect CD95 (Fas)-induced death of Jurkat T cells in the time course studied but did enhance the commitment to cytokine withdrawal-induced apoptosis of factor-dependent cell lines. The induction of cell death was not the result of direct cytoskeletal collapse, since treatment of the cells with cytochalasin D in the presence of IL-2 did not promote death. As with jasplakinolide, the enhancement of commitment to apoptosis could be delayed by overexpression of the anti-apoptotic protein Bcl-x(L), but, unlike jasplakinolide, cytochalasin D modestly affected the "execution" stage of apoptosis as well. Taken together, these results suggest that changes in actin dynamics, i.e., the rate of actin polymerization and depolymerization, modulate the transduction of the apoptotic signal committing lymphocytes, withdrawn from required growth factors, to the death pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号