首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
The CD95 (APO-1/Fas) receptor has attracted great interest in recent years because it transduces an apoptotic signal in a variety of different tissues. CD95 belongs to the NGF/TNF-receptor superfamily, members of which need to be trimerized by specific protein ligands in order to generate a signal. This review focuses on recent advances in the understanding of the proximal signal transduction mechanism of CD95. The cloning of numerous proteins that interact with CD95 and other members of this receptor family and the in vivo identification of several proteins that associate with CD95 in a ligand-dependent fashion opens the way to delineate the death pathway and to explain crosstalk among these receptors on a molecular basis.  相似文献   

3.
Induction of apoptosis in keratinocytes by UV light is a critical event in photocarcinogenesis. Although p53 is of importance in this process, evidence exists that other pathways play a role as well. Therefore, we studied whether the apoptosis-related surface molecule CD95 (Fas/APO-1) is involved. The human keratinocyte cell line HaCaT expresses CD95 and undergoes apoptosis after treatment with UV light or with the ligand of CD95 (CD95L). Incubation with a neutralizing CD95 antibody completely prevented CD95L-induced apoptosis but not UV-induced apoptosis, initially suggesting that the CD95 pathway may not be involved. However, the protease CPP32, a downstream molecule of the CD95 pathway, was activated in UV-exposed HaCaT cells, and UV-induced apoptosis was blocked by the ICE protease inhibitor zVAD, implying that at least similar downstream events are involved in CD95- and UV-induced apoptosis. Activation of CD95 results in recruitment of the Fas-associated protein with death domain (FADD) that activates ICE proteases. Immunoprecipitation of UV-exposed HaCaT cells revealed that UV light also induces recruitment of FADD to CD95. Since neutralizing anti-CD95 antibodies failed to prevent UV-induced apoptosis, this suggested that UV light directly activates CD95 independently of the ligand CD95L. Confocal laser scanning microscopy showed that UV light induced clustering of CD95 in the same fashion as CD95L. Prevention of UV-induced CD95 clustering by irradiating cells at 10°C was associated with a significantly reduced death rate. Together, these data indicate that UV light directly stimulates CD95 and thereby activates the CD95 pathway to induce apoptosis independently of the natural ligand CD95L. These findings further support the concept that UV light can affect targets at the plasma membrane, thereby even inducing apoptosis.  相似文献   

4.
The CD95(APO-1/Fas) DISC and beyond   总被引:18,自引:0,他引:18  
CD95 (APO-1/Fas) is a prototype death receptor characterized by the presence of an 80 amino acid death domain in its cytoplasmic tail. This domain is essential for the recruitment of a number of signaling components upon activation by either agonistic anti-CD95 antibodies or cognate CD95 ligand that initiate apoptosis. The complex of proteins that forms upon triggering of CD95 is called the death-inducting signaling complex (DISC). The DISC consists of an adaptor protein and initiator caspases and is essential for induction of apoptosis. A number of proteins have been reported to regulate formation or activity of the DISC. This review discusses recent developments in this area of death receptor research.  相似文献   

5.
6.
Two CD95 (APO-1/Fas) signaling pathways.   总被引:50,自引:1,他引:50       下载免费PDF全文
We have identified two cell types, each using almost exclusively one of two different CD95 (APO-1/Fas) signaling pathways. In type I cells, caspase-8 was activated within seconds and caspase-3 within 30 min of receptor engagement, whereas in type II cells cleavage of both caspases was delayed for approximately 60 min. However, both type I and type II cells showed similar kinetics of CD95-mediated apoptosis and loss of mitochondrial transmembrane potential (DeltaPsim). Upon CD95 triggering, all mitochondrial apoptogenic activities were blocked by Bcl-2 or Bcl-xL overexpression in both cell types. However, in type II but not type I cells, overexpression of Bcl-2 or Bcl-xL blocked caspase-8 and caspase-3 activation as well as apoptosis. In type I cells, induction of apoptosis was accompanied by activation of large amounts of caspase-8 by the death-inducing signaling complex (DISC), whereas in type II cells DISC formation was strongly reduced and activation of caspase-8 and caspase-3 occurred following the loss of DeltaPsim. Overexpression of caspase-3 in the caspase-3-negative cell line MCF7-Fas, normally resistant to CD95-mediated apoptosis by overexpression of Bcl-xL, converted these cells into true type I cells in which apoptosis was no longer inhibited by Bcl-xL. In summary, in the presence of caspase-3 the amount of active caspase-8 generated at the DISC determines whether a mitochondria-independent apoptosis pathway is used (type I cells) or not (type II cells).  相似文献   

7.
The CD95 (APO-1/Fas) death receptor plays an important role in many physiological and pathophysiological systems. Thus, the CD95 system contributes to activation-induced cell death. Therefore, reliable antibodies recognizing human CD95 are of great interest. Detection of CD95 expression often relies on antibodies, e.g., suitable for Western blotting. To detect CD95, we compared the specificity of nine different anti-human CD95 antibodies recognizing different epitopes by using postnuclear supernatants of four different cell lines. Only two of the antibodies tested, both directed against intracellular epitopes of human CD95, detected endogenous human CD95 by Western blotting. Therefore, we conclude that results obtained with other anti-CD95 antibodies should be treated with caution.  相似文献   

8.
Activation of the death receptor CD95 by its ligand or by UV radiation is associated with receptor clustering. The mechanism underlying this clustering is mostly unclear. Here we show that although disruption of the actin cytoskeleton by cytochalasin B (CyB) itself induces moderate apoptosis, it enhances apoptosis in HeLa cells induced either by UV radiation or an agonistic anti-CD95 antibody. CyB augments UV-induced apoptosis independently of UV-mediated DNA damage, since induction of DNA repair by exogenous DNA repair enzymes did not alter its enhancing effect. Inhibition of caspase-8, the most upstream caspase in CD95 signaling, blocked the apoptotic effect of CyB and the enhancing effect on UV- and CD95-induced apoptosis. Confocal laser scanning microscopy revealed that (i) CyB induces CD95 clustering, (ii) enhances UV-induced CD95 clustering, and (iii) CD95 clusters colocalize with disrupted actin filaments, suggesting a link between receptor clustering and actin rearrangement. Disruption of CD95 signaling by a dominant negative mutant of the signaling protein FADD protected from CyB-induced apoptosis and prevented the UV-enhancing effect. Accordingly, both the apoptotic and the enhancing effect of CyB was reduced in epidermal cells obtained from CD95 deficient mice (lpr) when compared to wild-type mice. These data suggest that disruption of the cytoskeleton causes apoptosis via activation of CD95 and enhances UV-induced apoptosis, possibly via aiding receptor clustering.  相似文献   

9.
T lymphocytes have variable sensitivity to anti-CD95 which does not correlate closely with the level of CD95 expressed. To investigate this phenomenon, we screened murine T lymphocyte cultures for their sensitivity to anti-CD95. Subclones of the S49.1 cells showed widely variable sensitivity to anti-CD95 but similar levels of CD95. The resistant clones became sensitive after treatment with actinomycin D suggesting that they expressed resistance protein(s) with a high turnover relative to the CD95 apoptosis induction machinery. Our data suggest that the resistance protein(s) are not Bcl-2, Bcl-x, Fap-1 or Bag-1. Forced, increased expression of CD95 made most of the resistant cells more sensitive, but some remained resistant suggesting that the expression of the resistant protein(s) is heterogeneous and that increased CD95 levels does not always overcome the resistance.  相似文献   

10.
11.
The CD95 (Apo-1/Fas)/CD95 ligand (CD95L) system is best characterized as a trigger of apoptosis. Nevertheless, despite broad expression of CD95L and CD95 in the developing brain, absence of functional CD95 (lpr mice) or CD95L (gld mice) does not alter neuronal numbers. Here, we report that in embryonic hippocampal and cortical neurons in vivo and in vitro CD95L does not induce apoptosis. Triggering of CD95 in cultured immature neurons substantially increases neurite branches by promoting their formation. The branching increase occurs in a caspase-independent and death domain-dependent manner and is paralleled by an increase in the nonphosphorylated form of Tau. Most importantly, lpr and gld mutants exhibit a reduced number of dendritic branches in vivo at the time when synapse formation takes place. These data reveal a novel function for the CD95 system and add to the picture of guidance molecules in the developing brain.  相似文献   

12.
Fas/CD95 is a key regulator of apoptotic signaling, which is crucial for the maintenance of homeostasis in peripheral lymphoid organs. TDAG51 has been shown to play critical roles in the up-regulation of Fas gene expression and T-cell apoptosis in vitro. In order to identify the role of TDAG51 in vivo, we generated TDAG51-deficient (TDAG51-/-) mice. Northern blotting revealed no expression of TDAG51 in TDAG51-/- mice, indicating that the TDAG51 gene was successfully targeted. TDAG51-/- mice were healthy and showed no gross developmental abnormalities. While Fas-deficient mice display marked lymphadenopathy, splenomegaly, and lymphocytosis, TDAG51-/- mice had no apparent defects in secondary lymphoid organs. Although TDAG51 is required for up-regulation of Fas expression in T-cell hybridomas, TDAG51-/- mice expressed normal levels of Fas and had normal T-cell apoptosis. Therefore, we conclude that TDAG51 is not essential for Fas up-regulation and T-cell apoptosis in vivo. There are several known homologs of TDAG51, and these homologs may substitute for TDAG51 in TDAG51-/- mice.  相似文献   

13.
Electroporation is a method for introducing DNA into cells by using a high-voltage electric field. This method is very simple and easily manipulated. We describe here a method for the modification of tumor cells with the Fas/Apo-1 (CD95) antigen-gene and Fas ligand (FasL)-gene transfection through the use of electroporation, and suggest that the Fas-FasL system is a good target for the induction of apoptosis-mediated antitumor activity. The Fas receptor/ligand system induces apoptosis and plays an important role in regulation of the immune system. In the method described, hepatoma MH134 (Fas and FasL) is transfected with murine Fas and FasL cDNA. A single administration of monoclonal anti-Fas antibody efficiently suppresses the growth of F6b (MH134+Neo+Fas) tumors but not that of N1d (MH134+Neo) tumors in gld/gld lpr/lpr mice. MH134+Neo+FasL tumor cells were rejected after the induction of inflammation with infiltration of neutrophils in mice. These results suggest that electroporation and Fas-mediated apoptosis are a good method for inducing of antitumor activity.  相似文献   

14.
Tumor immunity in perforin-deficient mice: a role for CD95 (Fas/APO-1)   总被引:3,自引:0,他引:3  
CTL and NK cells use two distinct cytocidal pathways: 1) perforin and granzyme based and 2) CD95L/CD95 mediated. The former requires perforin expression by the effectors (CTL or NK), whereas the latter requires CD95 (Fas/APO-1) expression by the target. We have investigated how these two factors contribute to tumor immune surveillance by studying the immunity of perforin-deficient mice against the progressor C57BL/6 Lewis lung carcinoma 3LL, which expresses no CD95 when cultured in vitro. Unexpectedly, the results indicated that the perforin-independent CD95L/CD95 pathway of CTL/NK plays a role in acting against D122 and Kb39.5 (39.5) high and low metastatic sublines, respectively, derived from the 3LL tumor. Although no membrane-bound CD95 was detected on cultured D122 and 39. 5 cells, surface CD95 expression on both D122 and 39.5 was considerably up-regulated when the tumors were grown in vivo. A similarly enhanced expression of CD95 was observed with three additional tumors; LF-, BW, and P815, injected into syngeneic and allogeneic mice. The finding of up-regulated CD95 expression on tumor cells placed in vivo suggests that a CD95-based mechanism plays a role in tumor immunity at early stages of tumor growth. Consequently, the progressive down-regulation of CD95 expression during tumor progression may indeed be an escape mechanism as previously reported. Together, these results suggest a role for CD95-dependent, perforin-independent immunity against certain tumors.  相似文献   

15.
I Herr  D Wilhelm  T Bhler  P Angel    K M Debatin 《The EMBO journal》1997,16(20):6200-6208
We report here that anticancer drugs such as doxorubicin lead to induction of the CD95 (APO-1/Fas) system of apoptosis and the cellular stress pathway which includes JNK/SAPKs. Ceramide, which accumulates in response to different types of cellular stress such as chemo- and radiotherapy, strongly induced expression of CD95-L, cleavage of caspases and apoptosis. Antisense CD95-L as well as dominant-negative FADD inhibited ceramide- and cellular stress-induced apoptosis. Fibroblasts from type A Niemann-Pick patients (NPA), genetically deficient in ceramide synthesis, failed to up-regulate CD95-L expression and to undergo apoptosis after gamma-irradiation or doxorubicin treatment. In contrast, JNK/SAPK activity was still inducible by doxorubicin in the NPA cells, suggesting that activation of JNK/SAPKs alone is not sufficient for induction of the CD95 system and apoptosis. CD95-L expression and apoptosis in NPA fibroblasts were restorable by exogenously added ceramide. In addition, NPA fibroblasts undergo apoptosis after triggering of CD95 with an agonistic antibody. These data demonstrate that ceramide links cellular stress responses induced by gamma-irradiation or anticancer drugs to the CD95 pathway of apoptosis.  相似文献   

16.
A Kaser  S Nagata  H Tilg 《Cytokine》1999,11(10):736-743
Interferon alpha (IFN-alpha) plays a prominent role in the therapy of a variety of diseases. The Fas/FasL system is crucial for the cytotoxic function and the peripheral elimination of activated T lymphocytes (ATC) by a mechanism referred to as activation-induced cell death (AICD). Recent studies suggest a link between IFN-alpha, the 2', 5'- oligoadenylate system and apoptosis. We therefore asked whether IFN-alpha is able to regulate the Fas/FasL pathway and thereby affects AICD. Peripheral blood mononuclear cells (PBMC), purified T cells and ATC of healthy volunteers were stimulated with various agents and the influence of IFN-alpha on Fas/FasL was assessed by mRNA and protein studies. The proportion of ATC undergoing AICD or anti-Fas-induced apoptosis was determined by FITC-annexin V staining and propidium iodide uptake. IFN-alpha upregulated mRNA expression of Fas and FasL in activated PBMC. Furthermore the concentration of the soluble form of FasL (sFasL) was increased in PBMC and T cells co-stimulated with IFN-alpha and various agents, whereas Fas surface expression was enhanced by IFN-alpha alone. IFN-alpha enhanced apoptosis induced by anti-Fas antibody and augmented AICD via the Fas/FasL pathway. IFN-alpha-regulated AICD may contribute to lymphopenia observed during IFN-alpha therapy. Our data further support that IFN-alpha is a multifunctional cytokine with profound effects on the immune cascades.  相似文献   

17.
18.
The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems   总被引:47,自引:0,他引:47  
Heat shock protein 70 (hsp70) is a stress-inducible protein that prevents apoptosis induced by a wide range of cytotoxic agents by an as yet undefined mechanism. The caspase family of cysteine proteases have been attributed a central role in the execution of apoptosis. However, several cases of caspase-independent apoptosis have been recently reported, suggesting that caspases may not be necessary for apoptosis in all cells. This study examines the protective role of hsp70 in both caspase-dependent and -independent apoptosis. Hydrogen peroxide (H2O2) used at low and high concentrations in Jurkat T cells induces caspase-dependent and -independent apoptosis, respectively. A hsp70-transfected Jurkat clone was used to observe the protection mediated by hsp70 during these two forms of apoptosis. Results reveal that hsp70 inhibits both caspase-dependent and -independent apoptosis. Furthermore, measurement of caspase-3 activity during caspase-dependent apoptosis revealed that caspase activation was inhibited in hsp70 transfectants. Early apoptotic events, such as mitochondrial depolarization, cytochrome c release, and increased intracellular calcium, were demonstrated to be common to both caspase-dependent and -independent H2O2-induced apoptosis. The inhibition of these events by hsp70 suggests that hsp70 may be an important anti-apoptotic regulator, functioning at a very early stage in the apoptotic pathway.  相似文献   

19.
Dunkern T  Roos W  Kaina B 《Mutation research》2003,544(2-3):167-172
Agents inducing O(6)-methylguanine (O(6)MeG) in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), are not only highly mutagenic and carcinogenic but also cytotoxic because of the induction of apoptosis. In CHO fibroblasts, apoptosis triggered by O(6)MeG requires cell proliferation and MutSalpha-dependent mismatch repair and is related to the induction of DNA double-strand breaks (DSBs). Furthermore, it is mediated by Bcl-2 degradation and does not require p53 for which the cells were mutated [Cancer Res. 60 (2000) 5815]. Here we studied cytotoxicity and apoptosis induced by MNNG in a pair of human lymphoblastoid cells expressing wild-type p53 (TK6) and mutant p53 (WTK1) and show that TK6 cells are more sensitive than WTK1 cells to cell killing (determined by a metabolic assay) and apoptosis. Apoptosis was a late response observed <24h after treatment and was related to accumulation of p53 and upregulation of Fas/CD95/Apo-1 receptor as well as Bax. The data indicate that MNNG induces apoptosis in lymphoblastoid cells by activating the p53-dependent Fas receptor-driven pathway. This is in contrast to CHO fibroblasts in which, in response to O(6)MeG, the mitochondrial damage pathway becomes activated.  相似文献   

20.
CD95 (APO-1/Fas) is an apoptosis-inducing receptor belonging to the tumor necrosis factor receptor superfamily. Multimerization of CD95 leads to instant recruitment of the signaling molecules FADD and caspase-8 to the activated receptor forming the death-inducing signaling complex (DISC). DISC formation is the first essential step of CD95 signaling and results in activation of caspase-8 starting a signaling cascade that leads to apoptosis. Here we describe a method for analyzing the CD95 DISC. The method is based on coimmunoprecipitation of the signaling molecules with the activated CD95 receptor followed by Western blot detection of associated molecules. Therefore, this method can analyze the very first signaling events during CD95-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号