首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The vertebrate Tap protein is a member of the NXF family of shuttling transport receptors for nuclear export of mRNA. Tap has a modular structure, and its most C-terminal domain is important for binding to FG repeat-containing nuclear pore proteins (FG-nucleoporins) and is sufficient to mediate nuclear shuttling. We report the solution structure of this C-terminal domain, which is based on a distinctive arrangement of four alpha-helices and is joined to the next module by a flexible 12-residue Pro-rich linker. F617A Tap suppresses FG-nucleoporin binding by the most C-terminal domain that, together with the structure of the other modules from which Tap is constructed, provides a structural context for its nuclear shuttling function.  相似文献   

3.
The metazoan proteins UAP56, REF1, and NXF1 are thought to bind sequentially to mRNA to promote its export to the cytoplasm: UAP56 is thought to recruit REF1 to nascent mRNA; REF1 acts as an adaptor protein mediating the association of NXF1 with mRNA, whereas NXF1 translocates the mRNA across the nuclear pore complex. REF1 is a component of the exon-exon junction complex (EJC); thus, the EJC is thought to play a role in the export of spliced mRNA. NXF1 and UAP56 are essential for mRNA export. An essential role for metazoan REF1 or the additional EJC proteins in this process has not been established. Contrary to expectation, we show that REF1 and the additional components of the EJC are dispensable for export of bulk mRNA in Drosophila cells. Only when REF1 and RNPS1 are codepleted, or when all EJC proteins are simultaneously depleted is a partial nuclear accumulation of polyadenylated RNAs observed. Because a significant fraction of bulk mRNA is detected in the cytoplasm of cells depleted of all EJC proteins, we conclude that additional adaptor protein(s) mediate the interaction between NXF1 and cellular mRNAs in metazoa. Our results imply that the essential role of UAP56 in mRNA export is not restricted to the recruitment of REF1.  相似文献   

4.

Background

The exon junction complex (EJC) is a dynamic multi-protein complex deposited onto nuclear spliced mRNAs upstream of exon-exon junctions. The four core proteins, eIF4A3, Magoh, Y14 and MLN51, are stably bound to mRNAs during their lifecycle, serving as a binding platform for other nuclear and cytoplasmic proteins. Recent evidence has shown that the EJC is involved in the splicing regulation of some specific events in both Drosophila and mammalian cells.

Results

Here, we show that knockdown of EJC core proteins causes widespread alternative splicing changes in mammalian cells. These splicing changes are specific to EJC core proteins, as knockdown of eIF4A3, Y14 and MLN51 shows similar splicing changes, and are different from knockdown of other splicing factors. The splicing changes can be rescued by a siRNA-resistant form of eIF4A3, indicating an involvement of EJC core proteins in regulating alternative splicing. Finally, we find that the splicing changes are linked with RNA polymerase II elongation rates.

Conclusion

Taken together, this study reveals that the coupling between EJC proteins and splicing is broader than previously suspected, and that a possible link exists between mRNP assembly and splice site recognition.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0551-7) contains supplementary material, which is available to authorized users.  相似文献   

5.
Holliday junctions (HJs) can be formed between sister chromatids or homologous chromosomes during the recombinational repair of DNA lesions. A variety of pathways act upon HJs to remove them from DNA, in events that are critical for appropriate chromosome segregation. Despite the identification and characterization of multiple enzymes involved in HJ processing, the cellular mechanisms that regulate and implement pathway usage have only just started to be delineated. A conserved network of core cell-cycle kinases and phosphatases modulate HJ metabolism by exerting spatial and temporal control over the activities of two structure-selective nucleases: yeast Mus81-Mms4 (human MUS81-EME1) and Yen1 (human GEN1). These regulatory cycles operate to establish the sequential activation of HJ processing enzymes, implementing a hierarchy in pathway usage that ensure the elimination of chromosomal interactions which would otherwise interfere with chromosome segregation. Mus81-Mms4/EME1 and Yen1/GEN1 emerge to define a special class of enzymes, evolved to satisfy the cellular need of safeguarding the completion of DNA repair when on the verge of chromosome segregation.  相似文献   

6.
TAP/NXF1 is a conserved mRNA export receptor serving as a link between messenger ribonucleoproteins (mRNPs) and the nuclear pore complex. The mechanism by which TAP recognizes its export substrate is unclear. We show here that TAP is added to spliced mRNP in human cells. We identified a distinct region of TAP that targets it to mRNP. Using yeast two-hybrid screens and in vitro binding studies, we found that this region coincides with a direct binding site for U2AF35, the small subunit of the splicing factor U2AF. This interaction is evolutionarily conserved across metazoa, indicating its significance. We further found in human cells that the exogenously expressed large U2AF subunit, U2AF65, accumulates in spliced mRNP, leading to the recruitment of U2AF35 and TAP. Similarly to TAP, U2AF65 stimulated directly the nuclear export and expression of an mRNA that is otherwise retained in the nucleus. Together with our finding that U2AF is continuously exported from the nucleus, these data suggest that U2AF participates in nuclear export, by facilitating TAP's addition to its mRNA substrates.  相似文献   

7.
8.
MLN51 is a nucleocytoplasmic shuttling protein that is overexpressed in breast cancer. The function of MLN51 in mammals remains elusive. Its fly homolog, named barentsz, as well as the proteins mago nashi and tsunagi have been shown to be required for proper oskar mRNA localization to the posterior pole of the oocyte. Magoh and Y14, the human homologs of mago nashi and tsunagi, are core components of the exon junction complex (EJC). The EJC is assembled on spliced mRNAs and plays important roles in post-splicing events including mRNA export, nonsense-mediated mRNA decay, and translation. In the present study, we show that human MLN51 is an RNA-binding protein present in ribonucleo-protein complexes. By co-immunoprecipitation assays, endogenous MLN51 protein is found to be associated with EJC components, including Magoh, Y14, and NFX1/TAP, and subcellular localization studies indicate that MLN51 transiently co-localizes with Magoh in nuclear speckles. Moreover, we demonstrate that MLN51 specifically associates with spliced mRNAs in co-precipitation experiments, both in the nucleus and in the cytoplasm, at the position where the EJC is deposited. Most interesting, we have identified a region within MLN51 sufficient to bind RNA, to interact with Magoh and spliced mRNA, and to address the protein to nuclear speckles. This conserved region of MLN51 was therefore named SELOR for speckle localizer and RNA binding module. Altogether our data demonstrate that MLN51 associates with EJC in the nucleus and remains stably associated with mRNA in the cytoplasm, suggesting that its overexpression might alter mRNA metabolism in cancer.  相似文献   

9.
Metazoan NXF1-p15 heterodimers promote the nuclear export of bulk mRNA across nuclear pore complexes (NPCs). In vitro, NXF1-p15 forms a stable complex with the nucleoporin RanBP2/Nup358, a component of the cytoplasmic filaments of the NPC, suggesting a role for this nucleoporin in mRNA export. We show that depletion of RanBP2 from Drosophila cells inhibits proliferation and mRNA export. Concomitantly, the localization of NXF1 at the NPC is strongly reduced and a significant fraction of this normally nuclear protein is detected in the cytoplasm. Under the same conditions, the steady-state subcellular localization of other nuclear or cytoplasmic proteins and CRM1-mediated protein export are not detectably affected, indicating that the release of NXF1 into the cytoplasm and the inhibition of mRNA export are not due to a general defect in NPC function. The specific role of RanBP2 in the recruitment of NXF1 to the NPC is highlighted by the observation that depletion of CAN/Nup214 also inhibits cell proliferation and mRNA export but does not affect NXF1 localization. Our results indicate that RanBP2 provides a major binding site for NXF1 at the cytoplasmic filaments of the NPC, thereby restricting its diffusion in the cytoplasm after NPC translocation. In RanBP2-depleted cells, NXF1 diffuses freely through the cytoplasm. Consequently, the nuclear levels of the protein decrease and export of bulk mRNA is impaired.  相似文献   

10.
Localization and local translation of oskar mRNA at the posterior pole of the Drosophila oocyte directs abdominal patterning and germline formation in the embryo. The process requires recruitment and precise regulation of motor proteins to form transport‐competent mRNPs. We show that the posterior‐targeting kinesin‐1 is loaded upon nuclear export of oskar mRNPs, prior to their dynein‐dependent transport from the nurse cells into the oocyte. We demonstrate that kinesin‐1 recruitment requires the DmTropomyosin1‐I/C isoform, an atypical RNA‐binding tropomyosin that binds directly to dimerizing oskar 3′UTRs. Finally, we show that a small but dynamically changing subset of oskar mRNPs gets loaded with inactive kinesin‐1 and that the motor is activated during mid‐oogenesis by the functionalized spliced oskar RNA localization element. This inefficient, dynamic recruitment of Khc decoupled from cargo‐dependent motor activation constitutes an optimized, coordinated mechanism of mRNP transport, by minimizing interference with other cargo‐transport processes and between the cargo‐associated dynein and kinesin‐1.  相似文献   

11.
Human transforming growth factor-β receptor type 2 (TGFβR2) mRNA harboring a premature translation termination codon (PTC) generated by frameshift mutation is targeted for nonsense-mediated translational repression (NMTR), rather than nonsense-mediated mRNA decay (NMD). Here we show that exon junction complex (EJC) downstream of a PTC plays an inhibitory role in translation of TGFβR2 mRNA. Translational repression by core EJC components occurs after formation of 80S ribosome complex, which is demonstrated using different types of internal ribosome entry sites (IRESes). Our findings implicate EJCs or core EJC components as negative regulators of translation.  相似文献   

12.
The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA–protein interaction can be readily disrupted by export factors further down the pathway.  相似文献   

13.
14.
The GTPases Rac and Cdc42 play a pivotal role in the establishment of cell polarity by stimulating biogenesis of tight junctions (TJs). In this study, we show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis) controls the cell polarity of epidermal keratinocytes. Similar to wild-type (WT) keratinocytes, Tiam1-deficient cells establish primordial E-cadherin-based adhesions, but subsequent junction maturation and membrane sealing are severely impaired. Tiam1 and V12Rac1 can rescue the TJ maturation defect in Tiam1-deficient cells, indicating that this defect is the result of impaired Tiam1-Rac signaling. Tiam1 interacts with Par3 and aPKCzeta, which are two components of the conserved Par3-Par6-aPKC polarity complex, and triggers biogenesis of the TJ through the activation of Rac and aPKCzeta, which is independent of Cdc42. Rac is activated upon the formation of primordial adhesions (PAs) in WT but not in Tiam1-deficient cells. Our data indicate that Tiam1-mediated activation of Rac in PAs controls TJ biogenesis and polarity in epithelial cells by association with and activation of the Par3-Par6-aPKC polarity complex.  相似文献   

15.
TDP-43 is linked to neurodegenerative diseases including frontotemporal dementia and amyotrophic lateral sclerosis. Mostly localized in the nucleus, TDP-43 acts in conjunction with other ribonucleoproteins as a splicing co-factor. Several RNA targets of TDP-43 have been identified so far, but its role(s) in pathogenesis remains unclear. Using Affymetrix exon arrays, we have screened for the first time for splicing events upon TDP-43 knockdown. We found alternative splicing of the ribosomal S6 kinase 1 (S6K1) Aly/REF-like target (SKAR) upon TDP-43 knockdown in non-neuronal and neuronal cell lines. Alternative SKAR splicing depended on the first RNA recognition motif (RRM1) of TDP-43 and on 5'-GA-3' and 5'-UG-3' repeats within the SKAR pre-mRNA. SKAR is a component of the exon junction complex, which recruits S6K1, thereby facilitating the pioneer round of translation and promoting cell growth. Indeed, we found that expression of the alternatively spliced SKAR enhanced S6K1-dependent signaling pathways and the translational yield of a splice-dependent reporter. Consistent with this, TDP-43 knockdown also increased translational yield and significantly increased cell size. This indicates a novel mechanism of deregulated translational control upon TDP-43 deficiency, which might contribute to pathogenesis of the protein aggregation diseases frontotemporal dementia and amyotrophic lateral sclerosis.  相似文献   

16.
The exon junction complex (EJC) is deposited on mRNA after splicing and participates in several aspects of RNA metabolism, from intracellular transport to translation. In this work, the functional and molecular interactions of Arabidopsis homologues of Mago, Y14, and PYM, three EJC components that participate in intron-mediated enhancement of gene expression in animals, have been analysed. AtMago, AtY14, and AtPYM are encoded by single genes that show similar expression patterns and contain common regulatory elements, known as site II, that are required for expression. AtPYM and AtY14 are phosphorylated by plant extracts and this modification regulates complex formation between both proteins. In addition, overexpression of AtMago and AtY14 in plants produces an increase in AtPYM protein levels, while overexpression of AtPYM results in increased formation of a complex that contains the three proteins. The effect of AtMago and AtY14 on AtPYM expression is most likely to be due to intron-mediated enhacement of AtPYM expression, since the AtPYM gene contains a leader intron that is required for expression. Indeed, transient transformation asssays indicated that the three proteins are able to increase expression from reporter constructs that contain leader introns required for the expression of different genes. The results indicate that the plant homologues of Mago, Y14, and PYM are closely interconnected, not only through their function as EJC components but also at different steps of their own gene expression mechanisms, probably reflecting the importance of their interaction for the correct expression of plant genes.  相似文献   

17.
18.
19.
The exon junction complex (EJC), a set of proteins deposited on mRNAs as a consequence of pre-mRNA splicing, is a key effector of downstream mRNA metabolism. We have identified eIF4AIII, a member of the eukaryotic translation initiation factor 4A family of RNA helicases (also known as DExH/D box proteins), as a novel EJC core component. Crosslinking and antibody inhibition studies suggest that eIF4AIII constitutes at least part of the platform anchoring other EJC components to spliced mRNAs. A nucleocytoplasmic shuttling protein, eIF4AIII associates in vitro and in vivo with two other EJC core factors, Y14 and Magoh. In mammalian cells, eIF4AIII is essential for nonsense-mediated mRNA decay (NMD). Finally, a model is proposed by which eIF4AIII represents a new functional class of DExH/D box proteins that act as RNA clamps or 'place holders' for the sequence-independent attachment of additional factors to RNAs.  相似文献   

20.
Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are splicing factors, which are diffusely distributed in the nucleoplasm and also concentrated in nuclear speckles. Fluorescently labeled, native U1 snRNPs were microinjected into the cytoplasm of living HeLa cells. After nuclear import single U1 snRNPs could be visualized and tracked at a spatial precision of 30 nm at a frame rate of 200 Hz employing a custom-built microscope with single-molecule sensitivity. The single-particle tracks revealed that most U1 snRNPs were bound to specific intranuclear sites, many of those presumably representing pre-mRNA splicing sites. The dissociation kinetics from these sites showed a multiexponential decay behavior on time scales ranging from milliseconds to seconds, reflecting the involvement of U1 snRNPs in numerous distinct interactions. The average dwell times for U1 snRNPs bound at sites within the nucleoplasm did not differ significantly from those in speckles, indicating that similar processes occur in both compartments. Mobile U1 snRNPs moved with diffusion constants in the range from 0.5 to 8 μm2/s. These values were consistent with uncomplexed U1 snRNPs diffusing at a viscosity of 5 cPoise and U1 snRNPs moving in a largely restricted manner, and U1 snRNPs contained in large supramolecular assemblies such as spliceosomes or supraspliceosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号