首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The metazoan proteins UAP56, REF1, and NXF1 are thought to bind sequentially to mRNA to promote its export to the cytoplasm: UAP56 is thought to recruit REF1 to nascent mRNA; REF1 acts as an adaptor protein mediating the association of NXF1 with mRNA, whereas NXF1 translocates the mRNA across the nuclear pore complex. REF1 is a component of the exon-exon junction complex (EJC); thus, the EJC is thought to play a role in the export of spliced mRNA. NXF1 and UAP56 are essential for mRNA export. An essential role for metazoan REF1 or the additional EJC proteins in this process has not been established. Contrary to expectation, we show that REF1 and the additional components of the EJC are dispensable for export of bulk mRNA in Drosophila cells. Only when REF1 and RNPS1 are codepleted, or when all EJC proteins are simultaneously depleted is a partial nuclear accumulation of polyadenylated RNAs observed. Because a significant fraction of bulk mRNA is detected in the cytoplasm of cells depleted of all EJC proteins, we conclude that additional adaptor protein(s) mediate the interaction between NXF1 and cellular mRNAs in metazoa. Our results imply that the essential role of UAP56 in mRNA export is not restricted to the recruitment of REF1.  相似文献   

3.
4.
5.
The conserved family of NXF proteins has been implicated in the export of messenger RNAs from the nucleus. In metazoans, NXFs heterodimerize with p15. The yeast genome encodes a single NXF protein (Mex67p), but there are multiple nxf genes in metazoans. Whether metazoan NXFs are functionally redundant, or their multiplication reflects an adaptation to a greater substrate complexity or to tissue-specific requirements has not been established. The Drosophila genome encodes one p15 homolog and four putative NXF proteins (NXF1 to NXF4). Here we show that depletion of the endogenous pools of NXF1 or p15 from Drosophila cells inhibits growth and results in a rapid and robust accumulation of polyadenylated RNAs within the nucleus. Fluorescence in situ hybridizations show that export of both heat-shock and non-heat-shock mRNAs, as well as intron-containing and intronless mRNAs is inhibited. Depleting endogenous NXF2 or NXF3 has no apparent phenotype. Moreover, NXF4 is not expressed at detectable levels in cultured Drosophila cells. We conclude that Dm NXF1/p15 heterodimers only (but not NXF2-NXF4) mediate the export of the majority of mRNAs in Drosophila cells and that the other members of the NXF family play more specialized or different roles.  相似文献   

6.
7.
After synthesis and transit through the nucleus, messenger RNAs (mRNAs) are exported to the cytoplasm through the nuclear pore complex (NPC). At the NPC, messenger ribonucleoproteins (mRNPs) first encounter the nuclear basket where mRNP rearrangements are thought to allow access to the transport channel. Here, we use single mRNA resolution live cell microscopy and subdiffraction particle tracking to follow individual mRNAs on their path toward the cytoplasm. We show that when reaching the nuclear periphery, RNAs are not immediately exported but scan along the nuclear periphery, likely to find a nuclear pore allowing export. Deletion or mutation of the nuclear basket proteins MLP1/2 or the mRNA binding protein Nab2 changes the scanning behavior of mRNPs at the nuclear periphery, shortens residency time at nuclear pores, and results in frequent release of mRNAs back into the nucleoplasm. These observations suggest a role for the nuclear basket in providing an interaction platform that keeps RNAs at the periphery, possibly to allow mRNP rearrangements before export.  相似文献   

8.
The mRNA export pathway is highly conserved throughout evolution. We have used RNA interference (RNAi) to functionally characterize bona fide RNA export factors and components of the exon-exon junction complex (EJC) in Caenorhabditis elegans. RNAi of CeNXT1/p15, the binding partner of CeNXF1/TAP, caused early embryonic lethality, demonstrating an essential function of this gene during C. elegans development. Moreover, depletion of this protein resulted in nuclear accumulation of poly(A)(+) RNAs, supporting a direct role of NXT1/p15 in mRNA export in C. elegans. Previously, we have shown that RNAi of CeSRm160, a protein of the EJC complex, resulted in wild-type phenotype; in the present study, we demonstrate that RNAi of CeY14, another component of this complex, results in embryonic lethality. In contrast, depletion of the EJC component CeRNPS1 results in no discernible phenotype. Proteins of the REF/Aly family act as adaptor proteins mediating the recruitment of the mRNA export factor, NXF1/TAP, to mRNAs. The C. elegans genome encodes three members of the REF/Aly family. RNAi of individual Ref genes, or codepletion of two Ref genes in different combinations, resulted in wild-type phenotype. Simultaneous suppression of all three Ref genes did not compromise viability or progression through developmental stages in the affected progeny, and only caused a minor defect in larval mobility. Furthermore, no defects in mRNA export were observed upon simultaneous depletion of all three REF proteins. These results suggest the existence of multiple adaptor proteins that mediate mRNA export in C. elegans.  相似文献   

9.
Nonsense-mediated mRNA decay (NMD) represents a key mechanism to control the expression of wild-type and aberrant mRNAs. Phosphorylation of the protein UPF1 in the context of translation termination contributes to committing mRNAs to NMD. We report that translation termination is inhibited by UPF1 and stimulated by cytoplasmic poly(A)-binding protein (PABPC1). UPF1 binds to eRF1 and to the GTPase domain of eRF3 both in its GTP- and GDP-bound states. Importantly, mutation studies show that UPF1 can interact with the exon junction complex (EJC) alternatively through either UPF2 or UPF3b to become phosphorylated and to activate NMD. On this basis, we discuss an integrated model where UPF1 halts translation termination and is phosphorylated by SMG1 if the termination-promoting interaction of PABPC1 with eRF3 cannot readily occur. The EJC, with UPF2 or UPF3b as a cofactor, interferes with physiological termination through UPF1. This model integrates previously competing models of NMD and suggests a mechanistic basis for alternative NMD pathways.  相似文献   

10.
Nuclear export of messenger ribonucleoproteins (mRNPs) through the nuclear pore complex (NPC) can be roughly classified into two forms: bulk and specific export, involving an nuclear RNA export factor 1 (NXF1)-dependent pathway and chromosome region maintenance 1 (CRM1)-dependent pathway, respectively. SUN proteins constitute the inner nuclear envelope component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we show that mammalian cells require SUN1 for efficient nuclear mRNP export. The results indicate that both SUN1 and SUN2 interact with heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and hnRNP K/J. SUN1 depletion inhibits the mRNP export, with accumulations of both hnRNPs and poly(A)+RNA in the nucleus. Leptomycin B treatment indicates that SUN1 functions in mammalian mRNA export involving the NXF1-dependent pathway. SUN1 mediates mRNA export through its association with mRNP complexes via a direct interaction with NXF1. Additionally, SUN1 associates with the NPC through a direct interaction with Nup153, a nuclear pore component involved in mRNA export. Taken together, our results reveal that the inner nuclear envelope protein SUN1 has additional functions aside from being a central component of the LINC complex and that it is an integral component of the mammalian mRNA export pathway suggesting a model whereby SUN1 recruits NXF1-containing mRNP onto the nuclear envelope and hands it over to Nup153.  相似文献   

11.
The deposition of proteins onto newly spliced mRNAs has far reaching consequences for their subsequent metabolism. We affinity-purified spliced human mRNPs under physiological conditions from HeLa nuclear extract and present the first comprehensive inventory of their protein composition as determined by mass spectrometry. Several proteins previously not known to be mRNP-associated were detected, including the DEAD-box helicases DDX3, DDX5, and DDX9, and the ELG, hNHN1, BCLAF1, and TRAP150 proteins. The association of some of the newly identified mRNP proteins was shown to be splicing-dependent, but not to require EJC formation. Initial recruitment of EJC proteins to the spliceosome did not require an EJC binding platform at the -20/24 region of the 5' exon. Finally, while recruitment of EJC proteins and stable EJC formation were not dependent on the cap binding complex, several of the newly identified mRNP proteins required the latter for their association with mRNPs. These results provide novel insights into the composition of spliced mRNPs and the requirements for the association of mRNP proteins with the newly spliced mRNA.  相似文献   

12.
13.
The multicomponent exon junction complex (EJC) is deposited on the spliced mRNA during pre-mRNA splicing and is implicated in several post-splicing events, including mRNA export, nonsense-mediated mRNA decay (NMD), and translation control. This report is the first to identify potential post-translational modifications of the EJC core component Y14. We demonstrate that Y14 is phosphorylated at its repeated arginine/serine (RS) dipeptides, likely by SR protein-specific kinases. Phosphorylation of Y14 abolished its interaction with EJC components as well as factors that function downstream of the EJC. A non-phosphorylatable Y14 mutant was equivalent to the wild-type protein with respect to its association with spliced mRNA and its ability in NMD activation, but the mutant sequestered EJC and NMD factors on ribosome-containing mRNA ribonucleoproteins (mRNPs). We therefore hypothesize that phosphorylation of Y14 occurs upon completion of mRNA surveillance, leading to dissociation of Y14 from ribosome-containing mRNPs. Moreover, we found that Y14 is possibly methylated at multiple arginine residues in the carboxyl-terminal domain and that methylation of Y14 was antagonized by phosphorylation of RS dipeptides. This study reveals antagonistic post-translational modifications of Y14 that may be involved in the remodeling of Y14-containing mRNPs.  相似文献   

14.
Tap, a member of the evolutionarily conserved nuclear RNA export factor (NXF) family of proteins, has been implicated in the nuclear export of bulk poly(A)+ RNAs. cDNAs encoding the mouse NXF proteins (Tap, NXF7, NXF2, and NXF3) were prepared and the gene products were characterized in terms of their genomic organization, expression patterns, and biochemical properties. Mouse Tap was found to be ubiquitously expressed, whereas tissue- and developmental stage specific expression of mouse Nxf2, Nxf3, and Nxf7 was observed. Although mouse Tap and NXF2 bound to the phenylalanine-glycine repeat sequences of nucleoporins, NXF7 and NXF3 did not. GFP-tagged mouse Tap and NXF2 were localized predominantly in the nucleus. In contrast, GFP-tagged NXF7 and NXF3 were localized exclusively in the cytoplasm. As shown for the human counterpart, disruption of the leucine-rich nuclear export signal or leptomycin B treatment abolishes the cytoplasmic localization of mouse NXF3. p15/NXT1, an essential cofactor for human Tap in the export of mRNAs, was able to bind to mouse Tap, NXF2, and NXF3, but NXF7 did not form a stable heterodimeric complex. Transient transfection experiments indicated that only mouse Tap and NXF2 enhance the nuclear export of an otherwise inefficiently exported mRNA substrate. The orthologous relationship between human and mouse Nxf genes is discussed on the basis of these data.  相似文献   

15.
16.
17.
We recently reported that spliceosomes alter messenger ribonucleoprotein particle (mRNP) composition by depositing several proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. When assembled in vitro, this so-called 'exon-exon junction complex' (EJC) contains at least five proteins: SRm160, DEK, RNPS1, Y14 and REF. To better investigate its functional attributes, we now describe a method for generating spliced mRNAs both in vitro and in vivo that either do or do not carry the EJC. Analysis of these mRNAs in Xenopus laevis oocytes revealed that this complex is the species responsible for enhancing nucleocytoplasmic export of spliced mRNAs. It does so by providing a strong binding site for the mRNA export factors REF and TAP/p15. Moreover, by serving as an anchoring point for the factors Upf2 and Upf3, the EJC provides a direct link between splicing and nonsense-mediated mRNA decay. Finally, we show that the composition of the EJC is dynamic in vivo and is subject to significant evolution upon mRNA export to the cytoplasm.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号