首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delta-5 and delta-6 desaturases (D5D and D6D) are key enzymes in endogenous synthesis of long-chain PUFAs. In this sample of healthy subjects (n = 310), genotypes of single nucleotide polymorphisms (SNPs) rs174537, rs174561, and rs3834458 in the FADS1-FADS2 gene cluster were strongly associated with proportions of LC-PUFAs and desaturase activities estimated in plasma and erythrocytes. Minor allele carriage associated with decreased activities of D5D (FADS1) (5.84 × 10−19P ≤ 4.5 × 10−18) and D6D (FADS2) (6.05 × 10−8P ≤ 4.20 × 10−7) was accompanied by increased substrate and decreased product proportions (0.05 ≤ P ≤ 2.49 × 10−16). The significance of haplotype association with D5D activity (P = 2.19 × 10−17) was comparable to that of single SNPs, but haplotype association with D6D activity (P = 3.39 × 10−28) was much stronger. In a randomized controlled dietary intervention, increasing eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) intake significantly increased D5D (P = 4.0 × 10−9) and decreased D6D activity (P = 9.16 × 10−6) after doses of 0.45, 0.9, and 1.8 g/day for six months. Interaction of rs174537 genotype with treatment was a determinant of D5D activity estimated in plasma (P = 0.05). In conclusion, different sites at the FADS1-FADS2 locus appear to influence D5D and D6D activity, and rs174537 genotype interacts with dietary EPA+DHA to modulate D5D.  相似文献   

2.
Historically, association of disease with the major histocompatibility complex (HLA) genes has been tested with HLA alleles that encode antigen-binding affinity. The association with Parkinson disease (PD), however, was discovered with noncoding SNPs in a genome-wide association study (GWAS). We show here that several HLA-region SNPs that have since been associated with PD form two blocks tagged by rs3129882 (p = 9 × 10−11) and by rs9268515 and/or rs2395163 (p = 3 × 10−11). We investigated whether these SNP-associations were driven by HLA-alleles at adjacent loci. We imputed class I and class II HLA-alleles for 2000 PD cases and 1986 controls from the NeuroGenetics Research Consortium GWAS and sequenced a subset of 194 cases and 204 controls. We were therefore able to assess accuracy of two imputation algorithms against next-generation-sequencing while taking advantage of the larger imputed data sets for disease study. Additionally, we imputed HLA alleles for 843 cases and 856 controls from another GWAS for replication. PD risk was positively associated with the B07:02_C07:02_DRB501_DRB115:01_DQA101:02_DQB106:02 haplotype and negatively associated with the C03:04, DRB104:04 and DQA103:01 alleles. The risk haplotype and DQA103:01 lost significance when conditioned on the SNPs, but C03:04 (OR = 0.72, p = 8 × 10−6) and DRB104:04 (OR = 0.65, p = 4 × 10−5) remained significant. Similarly, rs3129882 and the closely linked rs9268515 and rs2395163 remained significant irrespective of HLA alleles. rs3129882 and rs2395163 are expression quantitative trait loci (eQTLs) for HLA-DR and HLA-DQ (9 × 10−5 ≥ PeQTL ≥ 2 × 10−79), suggesting that HLA gene expression might influence PD. Our data suggest that PD is associated with both structural and regulatory elements in HLA. Furthermore, our study demonstrates that noncoding SNPs in the HLA region can be associated with disease irrespective of HLA alleles, and that observed associations with HLA alleles can sometimes be secondary to a noncoding variant.  相似文献   

3.
《PloS one》2016,11(3)

Background

Data are limited on genome-wide association studies (GWAS) for incident coronary heart disease (CHD). Moreover, it is not known whether genetic variants identified to date also associate with risk of CHD in a prospective setting.

Methods

We performed a two-stage GWAS analysis of incident myocardial infarction (MI) and CHD in a total of 64,297 individuals (including 3898 MI cases, 5465 CHD cases). SNPs that passed an arbitrary threshold of 5×10−6 in Stage I were taken to Stage II for further discovery. Furthermore, in an analysis of prognosis, we studied whether known SNPs from former GWAS were associated with total mortality in individuals who experienced MI during follow-up.

Results

In Stage I 15 loci passed the threshold of 5×10−6; 8 loci for MI and 8 loci for CHD, for which one locus overlapped and none were reported in previous GWAS meta-analyses. We took 60 SNPs representing these 15 loci to Stage II of discovery. Four SNPs near QKI showed nominally significant association with MI (p-value<8.8×10−3) and three exceeded the genome-wide significance threshold when Stage I and Stage II results were combined (top SNP rs6941513: p = 6.2×10−9). Despite excellent power, the 9p21 locus SNP (rs1333049) was only modestly associated with MI (HR = 1.09, p-value = 0.02) and marginally with CHD (HR = 1.06, p-value = 0.08). Among an inception cohort of those who experienced MI during follow-up, the risk allele of rs1333049 was associated with a decreased risk of subsequent mortality (HR = 0.90, p-value = 3.2×10−3).

Conclusions

QKI represents a novel locus that may serve as a predictor of incident CHD in prospective studies. The association of the 9p21 locus both with increased risk of first myocardial infarction and longer survival after MI highlights the importance of study design in investigating genetic determinants of complex disorders.  相似文献   

4.
《PloS one》2013,8(4)
To discover susceptibility genes of late-onset Alzheimer’s disease (LOAD), we conducted a 3-stage genome-wide association study (GWAS) using three populations: Japanese from the Japanese Genetic Consortium for Alzheimer Disease (JGSCAD), Koreans, and Caucasians from the Alzheimer Disease Genetic Consortium (ADGC). In Stage 1, we evaluated data for 5,877,918 genotyped and imputed SNPs in Japanese cases (n = 1,008) and controls (n = 1,016). Genome-wide significance was observed with 12 SNPs in the APOE region. Seven SNPs from other distinct regions with p-values <2×10−5 were genotyped in a second Japanese sample (885 cases, 985 controls), and evidence of association was confirmed for one SORL1 SNP (rs3781834, P = 7.33×10−7 in the combined sample). Subsequent analysis combining results for several SORL1 SNPs in the Japanese, Korean (339 cases, 1,129 controls) and Caucasians (11,840 AD cases, 10,931 controls) revealed genome wide significance with rs11218343 (P = 1.77×10−9) and rs3781834 (P = 1.04×10−8). SNPs in previously established AD loci in Caucasians showed strong evidence of association in Japanese including rs3851179 near PICALM (P = 1.71×10−5) and rs744373 near BIN1 (P = 1.39×10−4). The associated allele for each of these SNPs was the same as in Caucasians. These data demonstrate for the first time genome-wide significance of LOAD with SORL1 and confirm the role of other known loci for LOAD in Japanese. Our study highlights the importance of examining associations in multiple ethnic populations.  相似文献   

5.
Genome-wide association studies (GWASs) of follicular lymphoma (FL) have previously identified human leukocyte antigen (HLA) gene variants. To identify additional FL susceptibility loci, we conducted a large-scale two-stage GWAS in 4,523 case subjects and 13,344 control subjects of European ancestry. Five non-HLA loci were associated with FL risk: 11q23.3 (rs4938573, p = 5.79 × 10−20) near CXCR5; 11q24.3 (rs4937362, p = 6.76 × 10−11) near ETS1; 3q28 (rs6444305, p = 1.10 × 10−10) in LPP; 18q21.33 (rs17749561, p = 8.28 × 10−10) near BCL2; and 8q24.21 (rs13254990, p = 1.06 × 10−8) near PVT1. In an analysis of the HLA region, we identified four linked HLA-DRβ1 multiallelic amino acids at positions 11, 13, 28, and 30 that were associated with FL risk (pomnibus = 4.20 × 10−67 to 2.67 × 10−70). Additional independent signals included rs17203612 in HLA class II (odds ratio [ORper-allele] = 1.44; p = 4.59 × 10−16) and rs3130437 in HLA class I (ORper-allele = 1.23; p = 8.23 × 10−9). Our findings further expand the number of loci associated with FL and provide evidence that multiple common variants outside the HLA region make a significant contribution to FL risk.  相似文献   

6.
Although more than 20 genetic susceptibility loci have been reported for type 2 diabetes (T2D), most reported variants have small to moderate effects and account for only a small proportion of the heritability of T2D, suggesting that the majority of inter-person genetic variation in this disease remains to be determined. We conducted a multistage, genome-wide association study (GWAS) within the Asian Consortium of Diabetes to search for T2D susceptibility markers. From 590,887 SNPs genotyped in 1,019 T2D cases and 1,710 controls selected from Chinese women in Shanghai, we selected the top 2,100 SNPs that were not in linkage disequilibrium (r2<0.2) with known T2D loci for in silico replication in three T2D GWAS conducted among European Americans, Koreans, and Singapore Chinese. The 5 most promising SNPs were genotyped in an independent set of 1,645 cases and 1,649 controls from Shanghai, and 4 of them were further genotyped in 1,487 cases and 3,316 controls from 2 additional Chinese studies. Consistent associations across all studies were found for rs1359790 (13q31.1), rs10906115 (10p13), and rs1436955 (15q22.2) with P-values (per allele OR, 95%CI) of 6.49×10−9 (1.15, 1.10–1.20), 1.45×10−8 (1.13, 1.08–1.18), and 7.14×10−7 (1.13, 1.08–1.19), respectively, in combined analyses of 9,794 cases and 14,615 controls. Our study provides strong evidence for a novel T2D susceptibility locus at 13q31.1 and the presence of new independent risk variants near regions (10p13 and 15q22.2) reported by previous GWAS.  相似文献   

7.

Background

Age at natural menopause (ANM) is a complex trait with high heritability and is associated with several major hormonal-related diseases. Recently, several genome-wide association studies (GWAS), conducted exclusively among women of European ancestry, have discovered dozens of genetic loci influencing ANM. No study has been conducted to evaluate whether these findings can be generalized to Chinese women.

Methodology/Principal Findings

We evaluated the index single nucleotide polymorphisms (SNPs) in 19 GWAS-identified genetic susceptibility loci for ANM among 3,533 Chinese women who had natural menopause. We also investigated 3 additional SNPs which were in LD with the index SNP in European-ancestry but not in Asian-ancestry populations. Two genetic risk scores (GRS) were calculated to summarize SNPs across multiple loci one for all SNPs tested (GRSall), and one for SNPs which showed association in our study (GRSsel). All 22 SNPs showed the same association direction as previously reported. Eight SNPs were nominally statistically significant with P≤0.05: rs4246511 (RHBDL2), rs12461110 (NLRP11), rs2307449 (POLG), rs12611091 (BRSK1), rs1172822 (BRSK1), rs365132 (UIMC1), rs2720044 (ASH2L), and rs7246479 (TMEM150B). Especially, SNPs rs4246511, rs365132, rs1172822, and rs7246479 remained significant even after Bonferroni correction. Significant associations were observed for GRS. Women in the highest quartile began menopause 0.7 years (P = 3.24×10−9) and 0.9 years (P = 4.61×10−11) later than those in the lowest quartile for GRSsel and GRSall, respectively.

Conclusions

Among the 22 investigated SNPs, eight showed associations with ANM (P<0.05) in our Chinese population. Results from this study extend some recent GWAS findings to the Asian-ancestry population and may guide future efforts to identify genetic determination of menopause.  相似文献   

8.
For the identification of susceptibility loci for primary biliary cirrhosis (PBC), a genome-wide association study (GWAS) was performed in 963 Japanese individuals (487 PBC cases and 476 healthy controls) and in a subsequent replication study that included 1,402 other Japanese individuals (787 cases and 615 controls). In addition to the most significant susceptibility region, human leukocyte antigen (HLA), we identified two significant susceptibility loci, TNFSF15 (rs4979462) and POU2AF1 (rs4938534) (combined odds ratio [OR] = 1.56, p = 2.84 × 10−14 for rs4979462, and combined OR = 1.39, p = 2.38 × 10−8 for rs4938534). Among 21 non-HLA susceptibility loci for PBC identified in GWASs of individuals of European descent, three loci (IL7R, IKZF3, and CD80) showed significant associations (combined p = 3.66 × 10−8, 3.66 × 10−9, and 3.04 × 10−9, respectively) and STAT4 and NFKB1 loci showed suggestive association with PBC (combined p = 1.11 × 10−6 and 1.42 × 10−7, respectively) in the Japanese population. These observations indicated the existence of ethnic differences in genetic susceptibility loci to PBC and the importance of TNF signaling and B cell differentiation for the development of PBC in individuals of European descent and Japanese individuals.  相似文献   

9.
Spondyloarthritis (SpA) is a chronic inflammatory disorder with a strong genetic predisposition dominated by the role of HLA-B27. However, the contribution of other genes to the disease susceptibility has been clearly demonstrated. We previously reported significant evidence of linkage of SpA to chromosome 9q31–34. The current study aimed to characterize this locus, named SPA2. First, we performed a fine linkage mapping of SPA2 (24 cM) with 28 microsatellite markers in 149 multiplex families, which allowed us to reduce the area of investigation to an 18 cM (13 Mb) locus delimited by the markers D9S279 and D9S112. Second, we constructed a linkage disequilibrium (LD) map of this region with 1,536 tag single-nucleotide polymorphisms (SNPs) in 136 families (263 patients). The association was assessed using a transmission disequilibrium test. One tag SNP, rs4979459, yielded a significant P-value (4.9×10−5). Third, we performed an extension association study with rs4979459 and 30 surrounding SNPs in LD with it, in 287 families (668 patients), and in a sample of 139 cases and 163 controls. Strong association was observed in both familial and case/control datasets for several SNPs. In the replication study, carried with 8 SNPs in an independent sample of 232 cases and 149 controls, one SNP, rs6478105, yielded a nominal P-value<3×10−2. Pooled case/control study (371 cases and 312 controls) as well as combined analysis of extension and replication data showed very significant association (P<5×10−4) for 6 of the 8 latter markers (rs7849556, rs10817669, rs10759734, rs6478105, rs10982396, and rs10733612). Finally, haplotype association investigations identified a strongly associated haplotype (P<8.8×10−5) consisting of these 6 SNPs and located in the direct vicinity of the TNFSF15 gene. In conclusion, we have identified within the SPA2 locus a haplotype strongly associated with predisposition to SpA which is located near to TNFSF15, one of the major candidate genes in this region.  相似文献   

10.
《PloS one》2013,8(1)
Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH) (peak P = 1.5×10−31) and age-related maculopathy susceptibility 2 (ARMS2) (P = 4.3×10−24) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.1×10−6) associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10−6) and upstream of GLI2 (rs6721654; P = 6.5×10−6), encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.5×10−6), involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.  相似文献   

11.
The genetics of lymphoma susceptibility reflect the marked heterogeneity of diseases that comprise this broad phenotype. However, multiple subtypes of lymphoma are observed in some families, suggesting shared pathways of genetic predisposition to these pathologically distinct entities. Using a two-stage GWAS, we tested 530,583 SNPs in 944 cases of lymphoma, including 282 familial cases, and 4,044 public shared controls, followed by genotyping of 50 SNPs in 1,245 cases and 2,596 controls. A novel region on 11q12.1 showed association with combined lymphoma (LYM) subtypes. SNPs in this region included rs12289961 near LPXN, (PLYM = 3.89×10−8, OR = 1.29) and rs948562 (PLYM = 5.85×10−7, OR = 1.29). A SNP in a novel non-HLA region on 6p23 (rs707824, PNHL = 5.72×10−7) was suggestive of an association conferring susceptibility to lymphoma. Four SNPs, all in a previously reported HLA region, 6p21.32, showed genome-wide significant associations with follicular lymphoma. The most significant association with follicular lymphoma was for rs4530903 (PFL = 2.69×10−12, OR = 1.93). Three novel SNPs near the HLA locus, rs9268853, rs2647046, and rs2621416, demonstrated additional variation contributing toward genetic susceptibility to FL associated with this region. Genes implicated by GWAS were also found to be cis-eQTLs in lymphoblastoid cell lines; candidate genes in these regions have been implicated in hematopoiesis and immune function. These results, showing novel susceptibility regions and allelic heterogeneity, point to the existence of pathways of susceptibility to both shared as well as specific subtypes of lymphoid malignancy.  相似文献   

12.
Diabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.54 million SNPs in a combined cohort of 9,934 cases and 16,956 controls. Targeted follow-up of 53 SNPs in 1,120 affected trios uncovered three new loci associated with T1D that reached genome-wide significance. The most significantly associated SNP (rs539514, P = 5.66×10−11) resides in an intronic region of the LMO7 (LIM domain only 7) gene on 13q22. The second most significantly associated SNP (rs478222, P = 3.50×10−9) resides in an intronic region of the EFR3B (protein EFR3 homolog B) gene on 2p23; however, the region of linkage disequilibrium is approximately 800 kb and harbors additional multiple genes, including NCOA1, C2orf79, CENPO, ADCY3, DNAJC27, POMC, and DNMT3A. The third most significantly associated SNP (rs924043, P = 8.06×10−9) lies in an intergenic region on 6q27, where the region of association is approximately 900 kb and harbors multiple genes including WDR27, C6orf120, PHF10, TCTE3, C6orf208, LOC154449, DLL1, FAM120B, PSMB1, TBP, and PCD2. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D.  相似文献   

13.
Complement C3 and C4 play key roles in the main physiological activities of complement system, and their deficiencies or over-expression are associated with many clinical infectious or immunity diseases. A two-stage genome-wide association study (GWAS) was performed for serum levels of C3 and C4. The first stage was conducted in 1,999 healthy Chinese men, and the second stage was performed in an additional 1,496 subjects. We identified two SNPs, rs3753394 in CFH gene and rs3745567 in C3 gene, that are significantly associated with serum C3 levels at a genome-wide significance level (P = 7.33×10−11 and P = 1.83×10−9, respectively). For C4, one large genomic region on chromosome 6p21.3 is significantly associated with serum C4 levels. Two SNPs (rs1052693 and rs11575839) were located in the MHC class I area that include HLA-A, HLA-C, and HLA-B genes. Two SNPs (rs2075799 and rs2857009) were located 5′ and 3′ of C4 gene. The other four SNPs, rs2071278, rs3763317, rs9276606, and rs241428, were located in the MHC class II region that includes HLA-DRA, HLA-DRB, and HLA-DQB genes. The combined P-values for those eight SNPs ranged from 3.19×10−22 to 5.62×10−97. HBsAg-positive subjects have significantly lower C3 and C4 protein concentrations compared with HBsAg-negative subjects (P<0.05). Our study is the first GWAS report which shows genetic components influence the levels of complement C3 and C4. Our significant findings provide novel insights of their related autoimmune, infectious diseases, and molecular mechanisms.  相似文献   

14.
Immunoglobulin E (IgE) is one of the central players in asthma and allergic diseases. Although the serum IgE level, a useful endophenotype, is generally increased in patients with asthma, genetic factors influencing IgE regulation in asthma are still not fully understood. To identify the genetic variations associated with total serum and mite-specific IgEs in asthmatics, a genome-wide association study (GWAS) of 657,366 single nucleotide polymorphisms (SNPs) was performed in 877 Korean asthmatics. This study found that several new genes might be associated with total IgE in asthmatics, such as CRIM1 (rs848512, P = 1.18×10−6; rs711254, P = 6.73×10−6), ZNF71 (rs10404342, P = 7.60×10−6), TLN1 (rs4879926, P = 7.74×10−6), and SYNPO2 (rs1472066, P = 8.36×10−6; rs1038770, P = 8.66×10−6). Regarding the association of specific IgE to house dust mites, it was observed that intergenic SNPs nearby to OPRK1 and LOC730217 might be associated with Dermatophagoides pteronyssinus (D.p.) and Dermatophagoides farinae (D.f.) in asthmatics, respectively. In further pathway analysis, the phosphatidylinositol signaling system and adherens junction pathways were estimated to play a role in the regulation of total IgE levels in asthma. Although functional evaluations and replications of these results in other populations are needed, this GWAS of serum IgE in asthmatics could facilitate improved understanding of the role of the newly identified genetic variants in asthma and its related phenotypes.  相似文献   

15.
《PloS one》2009,4(6)
The outcome of Genome-Wide Association Studies (GWAS) has challenged the field of blood pressure (BP) genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany) to address (i) SNP coverage in 160 BP candidate genes; (ii) the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region±10 kb) covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11) to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P<10−3) were detected for the genes, where >50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb) revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P<0.05/2319, P<2.15×10−5), the strength of some detected associations was close to this level: rs10889553 (LEPR) and systolic BP (SBP) (P = 4.5×10−5) as well as rs10954174 (LEP) and diastolic BP (DBP) (P = 5.20×10−5). In total, 12 markers in 7 genes (ADRA2A, LEP, LEPR, PTGER3, SLC2A1, SLC4A2, SLC8A1) revealed considerable association (P<10−3) either with SBP, DBP, and/or hypertension (HYP). None of these were confirmed in replication samples (KORA S4, HYPEST, BRIGHT). However, supportive evidence for the association of rs10889553 (LEPR) and rs11195419 (ADRA2A) with BP was obtained in meta-analysis across samples stratified either by body mass index, smoking or alcohol consumption. Haplotype analysis highlighted LEPR and PTGER3. In conclusion, the lack of associations in BP candidate genes may be attributed to inadequate marker coverage on the genome-wide arrays, small phenotypic effects of the loci and/or complex interaction with life-style and metabolic parameters.  相似文献   

16.
Genome-wide association studies (GWASs) primarily performed in European-ancestry (EA) populations have identified numerous loci associated with body mass index (BMI). However, it is still unclear whether these GWAS loci can be generalized to other ethnic groups, such as African Americans (AAs). Furthermore, the putative functional variant or variants in these loci mostly remain under investigation. The overall lower linkage disequilibrium in AA compared to EA populations provides the opportunity to narrow in or fine-map these BMI-related loci. Therefore, we used the Metabochip to densely genotype and evaluate 21 BMI GWAS loci identified in EA studies in 29,151 AAs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Eight of the 21 loci (SEC16B, TMEM18, ETV5, GNPDA2, TFAP2B, BDNF, FTO, and MC4R) were found to be associated with BMI in AAs at 5.8 × 10−5. Within seven out of these eight loci, we found that, on average, a substantially smaller number of variants was correlated (r2 > 0.5) with the most significant SNP in AA than in EA populations (16 versus 55). Conditional analyses revealed GNPDA2 harboring a potential additional independent signal. Moreover, Metabochip-wide discovery analyses revealed two BMI-related loci, BRE (rs116612809, p = 3.6 × 10−8) and DHX34 (rs4802349, p = 1.2 × 10−7), which were significant when adjustment was made for the total number of SNPs tested across the chip. These results demonstrate that fine mapping in AAs is a powerful approach for both narrowing in on the underlying causal variants in known loci and discovering BMI-related loci.  相似文献   

17.
Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.  相似文献   

18.
To investigate the genetics of late-onset myasthenia gravis (LOMG), we conducted a genome-wide association study imputation of >6 million single nucleotide polymorphisms (SNPs) in 532 LOMG cases (anti–acetylcholine receptor [AChR] antibody positive; onset age ≥50 years) and 2,128 controls matched for sex and population substructure. The data confirm reported TNFRSF11A associations (rs4574025, P = 3.9 × 10−7, odds ratio [OR] 1.42) and identify a novel candidate gene, ZBTB10, achieving genome-wide significance (rs6998967, P = 8.9 × 10−10, OR 0.53). Several other SNPs showed suggestive significance including rs2476601 (P = 6.5 × 10−6, OR 1.62) encoding the PTPN22 R620W variant noted in early-onset myasthenia gravis (EOMG) and other autoimmune diseases. In contrast, EOMG-associated SNPs in TNIP1 showed no association in LOMG, nor did other loci suggested for EOMG. Many SNPs within the major histocompatibility complex (MHC) region showed strong associations in LOMG, but with smaller effect sizes than in EOMG (highest OR ~2 versus ~6 in EOMG). Moreover, the strongest associations were in opposite directions from EOMG, including an OR of 0.54 for DQA1*05:01 in LOMG (P = 5.9 × 10−12) versus 2.82 in EOMG (P = 3.86 × 10−45). Association and conditioning studies for the MHC region showed three distinct and largely independent association peaks for LOMG corresponding to (a) MHC class II (highest attenuation when conditioning on DQA1), (b) HLA-A and (c) MHC class III SNPs. Conditioning studies of human leukocyte antigen (HLA) amino acid residues also suggest potential functional correlates. Together, these findings emphasize the value of subgrouping myasthenia gravis patients for clinical and basic investigations and imply distinct predisposing mechanisms in LOMG.  相似文献   

19.
DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10−4, β: −0.018 for allele C), rs7553831 (P = 1.30×10−4, β: −0.018 for allele T), and rs6697469 (P = 1.59×10−3, β: −0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10−4, β: −0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn’t observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.  相似文献   

20.

Aims

The DUSP9 locus on chromosome X was identified as a susceptibility locus for type 2 diabetes in a meta-analysis of European genome-wide association studies (GWAS), and GWAS in South Asian populations identified 6 additional single nucleotide polymorphism (SNP) loci for type 2 diabetes. However, the association of these loci with type 2 diabetes have not been examined in the Japanese. We performed a replication study to investigate the association of these 7 susceptibility loci with type 2 diabetes in the Japanese population.

Methods

We genotyped 11,319 Japanese participants (8,318 with type 2 diabetes and 3,001 controls) for each of the 7 SNPs–rs5945326 near DUSP9, rs3923113 near GRB14, rs16861329 in ST6GAL1, rs1802295 in VPS26A, rs7178572 in HMG20A, rs2028299 near AP3S2, and rs4812829 in HNF4A–and examined the association of each of these 7 SNPs with type 2 diabetes by using logistic regression analysis.

Results

All SNPs had the same direction of effect (odds ratio [OR]>1.0) as in the original reports. One SNP, rs5945326 near DUSP9, was significantly associated with type 2 diabetes at a genome-wide significance level (p = 2.21×10−8; OR 1.39, 95% confidence interval [CI]: 1.24−1.56). The 6 SNPs derived from South Asian GWAS were not significantly associated with type 2 diabetes in the Japanese population by themselves (p≥0.007). However, a genetic risk score constructed from 6 South Asian GWAS derived SNPs was significantly associated with Japanese type 2 diabetes (p = 8.69×10−4, OR  = 1.06. 95% CI; 1.03−1.10).

Conclusions/interpretation

These results indicate that the DUSP9 locus is a common susceptibility locus for type 2 diabetes across different ethnicities, and 6 loci identified in South Asian GWAS also have significant effect on susceptibility to Japanese type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号