首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
There has been a marked increase in the distribution, intensity and frequency of proliferations of some species of the benthic mat-forming, toxin-producing genus Phormidium in rivers globally over the last decade. This review summarises current knowledge on their taxonomy, distribution, toxin content, environmental drivers of proliferations, and monitoring and management strategies in New Zealand. Although toxic Phormidium proliferation occurs in rivers worldwide little is known about these factors in most countries. Proliferations, defined as >20% cover of a riverbed, have been identified in 103 rivers across New Zealand. Morphological and molecular data indicate the main species responsible is Phormidium autumnale. In New Zealand Phormidium produces anatoxins (anatoxin-a, homoanatoxin-a, dihydroanatoxin-a, and dihydrohomoanatoxin-a) and these were detected in 67% of 771 samples from 40 rivers. The highest concentration measured was 712 mg kg−1 dried weight (Oreti River, Southland), with considerable spatial and temporal variability in anatoxin concentrations between and within rivers. A synthesis of field based studies suggests that Phormidium proliferations are most likely when there is some enrichment of dissolved inorganic nitrogen but when water-column dissolved reactive phosphorus is less than 0.01 mg L−1. Once established Phormidium-dominated mats trap sediment and internal mat biogeochemistry can mobilise sediment-bound phosphorus, which is then available for growth. Removal of Phormidium-dominated mats is primarily due to shear stress and substrate disturbance, although there is also evidence for autogenic detachment. A combination of factors including; changes to riparian margins, increased nitrate and fine sediment loads, and alterations in flow regimes are likely to have contributed to the rise in Phormidium proliferations.  相似文献   

2.
Rhizophora apiculata leaf litter decomposition and the influence of this process on phosphorus (P) dynamics were studied in mangrove and sand flat sediments at the Bangrong mangrove forest, Phuket, Thailand. The remaining P in the mangrove leaf litter increased with time of decomposition to 174% and 220% of the initial amount in the litter in sand flat and mangrove sediment, respectively, although about 50% of the dry weight had been lost. The incorporation of P into the litter was probably associated with humic acids and metal bridging, especially caused by iron (Fe), which also accumulated in considerable amounts in the litter (5-10 times initial concentration). The addition of leaves to the sediment caused increased concentrations of dissolved reactive phosphate (DRP) in the porewater, especially in sand flat sediment. The DRP probably originated from Fe-bound P in the sediment, because decomposition of buried leaf litter caused increased respiration and reduced the redox potential (Eh) in the sediments. Binding of P to refractory organic material and oxidized Fe at the sediment-water interface explains the low release of DRP from the sediment. This mechanism also explains the generally low DRP concentration in the mangrove porewater, the low nutrient content of the R. apiculata leaves, but also the higher total sediment P concentration of the mangrove sediment as compared to sediments outside the mangrove. Both the low release rates for DRP from the sediment and the accumulation of P associated with leaf litter decomposition tend to preserve P in the sediments.  相似文献   

3.
Defining the geographic origins of free‐living aquatic microorganisms can be problematic because many such organisms have ubiquitous distributions, and proving absence from a region is practically impossible. Geographic origins become important if microorganisms have invasive characteristics. The freshwater diatom Didymosphenia geminata is a potentially ubiquitous microorganism for which the recent global expansion of nuisance proliferations has been attributed to environmental change. The changes may include declines in dissolved reactive phosphorus (DRP) to low levels (e.g., <2 mg/m3) and increases in dissolved inorganic nitrogen (DIN) to >10 mg/m3 because both these nutrient conditions are associated with nuisance proliferations of D. geminata. Proliferations of D. geminata have been observed in South Island, New Zealand, since 2004. We aimed to address the ubiquity hypothesis for D. geminata in New Zealand using historical river water nutrient data and new molecular analyses. We used 15 years of data at 77 river sites to assess whether trends in DRP or DIN prior to the spread of D. geminata were consistent with a transition from a rare, undetected, species to a nuisance species. We used new sequences of chloroplast regions to examine the genetic similarity of D. geminata populations from New Zealand and six overseas locations. We found no evidence for declines in DRP concentrations since 1989 that could explain the spread of proliferations since 2004. At some affected sites, lowest DRP occurred before 2004. Trends in DIN also did not indicate enhanced suitability for D. geminata. Lack of diversity in the chloroplast intergenic regions of New Zealand populations and populations from western North America is consistent with recent dispersal to New Zealand. Our analyses did not support the proposal that D. geminata was historically present in New Zealand rivers. These results provide further evidence countering proposals of general ubiquity in freshwater diatoms and indicate that, as assumed in 2004, D. geminata is a recent arrival in New Zealand.  相似文献   

4.
Desiccation and recovery of antarctic cyanobacterial mats   总被引:2,自引:2,他引:0  
Summary The ability of cyanobacterial mats from Antarctic ponds and streams to recover from desiccation is described. Mats dominated by Nostoc dehydrated rapidly and were dry within 5 h of exposure. Nostoc mats recovered to pre-desiccation rates of photosynthesis and respiration within as little as 10 min of rewetting. Recovery of acetylene reduction activity was slower (>24 h). Phormidium dominated mats were less tolerant of desiccation, and recovery on rewetting from air-drying was not complete after 10 days. Viable diaspores were, however, found in Phormidium mats which had been exposed for 3 years. Partial hydration during aerial exposure improved the survival of Phormidium mats, but appeared to slow the recovery of Nostoc mats on subsequent rewetting.  相似文献   

5.
The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile. Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq), and bioenergetic divergence index (BDq). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses of MDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints.  相似文献   

6.
7.
Decomposition of natural populations of Lake Mendota phytoplankton dominated by blue-green algae (cyanobacteria) was monitored by using oxygen uptake and disappearance of chlorophyll, algal volume (fluorescence microscopy), particulate protein, particulate organic carbon, and photosynthetic ability (14CO2 up-take). In some experiments, decomposition of 14C-labeled axenic cultures of Anabaena sp. was also measured. In addition to decomposition, mineralization of inorganic nitrogen and phosphorus were followed in some experiments. Decomposition could be described as a first-order process, and the rate of decomposition was similar to that found by others using pure cultures of eucaryotic algae. Nitrogen and phosphorus never limited the decomposition process, even when the lake water was severely limited in soluble forms of these nutrients. This suggests that the bacteria responsible for decomposition can obtain all of their key nutrients for growth from the blue-green algal cells. Filtration of lake water through plankton netting that removed up to 90% of the algal biomass usually did not cause a similar decrease in oxygen demand, suggesting that most of the particulate organic matter used for respiration of the decomposing bacteria was in a small-particle fraction. Short-term oxygen demand correlated well with the particulate chlorophyll concentration of the sample, and a relationship was derived that could be used to predict community respiration of the lake from chlorophyll concentration. Kinetic analysis showed that not all analyzed components disappeared at the same rate during the decomposition process. The relative rates of decrease of the measured parameters were as follows: photosynthetic ability > algal volume > particulate chlorophyll > particulate protein. Decomposition of 14C-labeled Anabaena occurred at similar rates with aerobic epilimnetic water and with anaerobic sediment, but was considerably slower with anaerobic hypolimnetic water. Of the various genera present in the lake, Aphanizomenon and Anabaena were more sensitive to decomposition than was Microcystis. In addition to providing a general picture of the decomposition process, the present work relates to other work on sedimentation to provide a detailed picture of the fate of blue-green algal biomass in a eutrophic lake ecosystem.  相似文献   

8.
The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.  相似文献   

9.
We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 μm). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (>45 μM) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater.  相似文献   

10.
Microbialites are organosedimentary deposits that have built up as a result of the growth and binding of detrital sediment by a benthic microbial community. This study focuses on microbialites built by monospecific populations of cyanobacteria in the south-west lagoon of New Caledonia, where they have been observed down to 20–25 m depth. The aim was to study their photosynthetic and respiratory responses to various light intensities. The Phormidium sp. TK1 microbialite was collected at 19 m depth and the P. crosbyanum (Tilden) microbialite was collected at 0.5 and 13 m depth. Phormidium sp. TK1 showed all the characteristic features of a low-light adapted species. The initial slope of the Photosynthesis versus Irradiance curve for this microbialite was close to the maximum quantum yield indicating an efficient light absorption and utilization at low light. The photosynthesis maximum was located 0.2–0.4 mm below the surface and did not shift with changing light intensity. Respiration rates were low and not enhanced by light; photoinhibition was observed at higher light intensities. In Phormidium crosbyanum (Tilden) microbialites, the photosynthesis maximum shifted downward to lower depths with increasing light, probably as a result of phototactic migration of cyanobacterial filaments, and light-enhanced respiration was observed at light intensities above light saturation. The photosynthetic para- meters measured in P. crosbyanum indicate that P. crosbyanum is capable of photo-acclimation at high light intensities. The gross productivity of the different microbialites was comparable to values measured in cyanobacterial stromatolites observed in other shallow environments. However, the microbialites studied here were characterized by a lower respiration / production ratio which indicates a higher growth efficiency.  相似文献   

11.

Rationale and Experimental Approach

Aggregate dredging is a growing source of anthropogenic disturbance in coastal UK waters and has the potential to impact marine systems through the smothering of benthic fauna with organically loaded screening discards. This study investigates the tolerance of the blue mussel, Mytilus edulis to such episodic smothering events using a multi-factorial design, including organic matter concentration, temperature, sediment fraction size and duration of burial as important predictor variables.

Results and Discussion

Mussel mortality was significantly higher in organically loaded burials when compared to control sediments after just 2 days. Particularly, M. edulis specimens under burial in fine sediment with high (1%) concentrations of organic matter experienced a significantly higher mortality rate (p<0.01) than those under coarse control aggregates. Additionally, mussels exposed to the summer maximum temperature treatment (20°C) exhibited significantly increased mortality (p<0.01) compared to those in the ambient treatment group (15°C). Total Oxygen Uptake rates of experimental aggregates were greatest (112.7 mmol m-2 day-1) with 1% organic loadings in coarse sediment at 20°C. Elevated oxygen flux rates in porous coarse sediments are likely to be a function of increased vertical migration of anaerobically liberated sulphides to the sediment-water interface. However, survival of M. edulis under bacterial mats of Beggiatoa spp. indicates the species’ resilience to sulphides and so we propose that the presence of reactive organic matter within the burial medium may facilitate bacterial growth and increase mortality through pathogenic infection. This may be exacerbated under the stable interstitial conditions in fine sediment and increased bacterial metabolism under high temperatures. Furthermore, increased temperature may impose metabolic demands upon the mussel that cannot be met during burial-induced anaerobiosis.

Summary

Lack of consideration for the role of organic matter and temperature during sedimentation events may lead to an overestimation of the tolerance of benthic species to smothering from dredged material.  相似文献   

12.
Each summer, the nuisance green alga Cladophora (mostly Cladophora glomerata) amasses along Lake Michigan beaches, creating nearshore anoxia and unsightly, malodorous mats that can attract problem animals and detract from visitor enjoyment. Traditionally, elevated counts of Escherichia coli are presumed to indicate the presence of sewage, mostly derived from nearby point sources. The relationship between fecal indicator bacteria and Cladophora remains essentially unstudied. This investigation describes the local and regional density of Escherichia coli and enterococci in Cladophora mats along beaches in the four states (Wisconsin, Illinois, Indiana, and Michigan) bordering Lake Michigan. Samples of Cladophora strands collected from 10 beaches (n = 41) were assayed for concentrations of E. coli and enterococci during the summer of 2002. Both E. coli and enterococci were ubiquitous (up to 97% occurrence), with overall log mean densities (± standard errors) of 5.3 (± 4.8) and 4.8 (± 4.5) per g (dry weight). E. coli and enterococci were strongly correlated in southern Lake Michigan beaches (P < 0.001, R2 = 0.73, n = 17) but not in northern beaches (P = 0.892, n = 16). Both E. coli and enterococci survived for over 6 months in sun-dried Cladophora mats stored at 4°C; the residual bacteria in the dried alga readily grew upon rehydration. These findings suggest that Cladophora amassing along the beaches of Lake Michigan may be an important environmental source of indicator bacteria and call into question the reliability of E. coli and enterococci as indicators of water quality for freshwater recreational beaches.  相似文献   

13.
Various types of cyanobacterial mats were predominant in a wetland, constructed for the remediation of oil-polluted residual waters from an oil field in the desert of the south-eastern Arabian Peninsula, although such mats were rarely found in other wetland systems. There is scarce information on the bacterial diversity, spatial distribution and oil-biodegradation capabilities of freshwater wetland oil-polluted mats. Microbial community analysis by Automated Ribosomal Spacer Analysis (ARISA) showed that the different mats hosted distinct microbial communities. Average numbers of operational taxonomic units (OTUsARISA) were relatively lower in the mats with higher oil levels and the number of shared OTUsARISA between the mats was <60% in most cases. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities in the wetland mats were influenced by oil and ammonia levels, but to a lesser extent by plant density. In addition to oil and ammonia, redundancy analysis (RDA) showed also a significant contribution of temperature, dissolved oxygen and sulfate concentration to the variations of the mats’ microbial communities. Pyrosequencing yielded 282,706 reads with >90% of the sequences affiliated to Proteobacteria (41% of total sequences), Cyanobacteria (31%), Bacteriodetes (11.5%), Planctomycetes (7%) and Chloroflexi (3%). Known autotrophic (e.g. Rivularia) and heterotrophic (e.g. Azospira) nitrogen-fixing bacteria as well as purple sulfur and non-sulfur bacteria were frequently encountered in all mats. On the other hand, sequences of known sulfate-reducing bacteria (SRBs) were rarely found, indicating that SRBs in the wetland mats probably belong to yet-undescribed novel species. The wetland mats were able to degrade 53–100% of C12–C30 alkanes after 6 weeks of incubation under aerobic conditions. We conclude that oil and ammonia concentrations are the major key players in determining the spatial distribution of the wetland mats’ microbial communities and that these mats contribute directly to the removal of hydrocarbons from oil field wastewaters.  相似文献   

14.
Sediment loads have long been known to be deleterious to corals, but the effects of turbidity and settling particles have not previously been partitioned. This study provides a novel approach using inert silicon carbide powder to partition and quantify the mechanical effects of sediment settling versus reduced light under a chronically high sedimentary regime on two turbid water corals commonly found in Singapore (Galaxea fascicularis and Goniopora somaliensis). Coral fragments were evenly distributed among three treatments: an open control (30% ambient PAR), a shaded control (15% ambient PAR) and sediment treatment (15% ambient PAR; 26.4 mg cm−2 day−1). The rate of photosynthesis and respiration, and the dark-adapted quantum yield were measured once a week for four weeks. By week four, the photosynthesis to respiration ratio (P/R ratio) and the photosynthetic yield (Fv/Fm) had fallen by 14% and 3–17% respectively in the shaded control, contrasting with corals exposed to sediments whose P/R ratio and yield had declined by 21% and 18–34% respectively. The differences in rates between the shaded control and the sediment treatment were attributed to the mechanical effects of sediment deposition. The physiological response to sediment stress differed between species with G. fascicularis experiencing a greater decline in the net photosynthetic yield (13%) than G. somaliensis (9.5%), but a smaller increase in the respiration rates (G. fascicularis = 9.9%, G. somaliensis = 14.2%). These different physiological responses were attributed, in part, to coral morphology and highlighted key physiological processes that drive species distribution along high to low turbidity and depositional gradients.  相似文献   

15.
Kumar D  Gaur JP 《Bioresource technology》2011,102(3):2529-2535
The pH-dependent metal sorption by Oscillatoria- and Phormidium-dominated mats was effectively expressed by the Hill function. The estimated Hill functions can fruitfully predict the amount of metal sorbed at a particular initial pH. Pretreatment of biomass with 0.1 mmol L−1 HCl was more effective than pretreatment with CaCl2, HNO3, NaOH, and SDS in enhancing metal sorption ability of the biomass. Desorption of metal ions in the presence of 100 mmol L−1 HCl from metal-loaded mat biomass was completed within 1 h. After six cycles of metal sorption/desorption, sorption decreased by 6-15%. Only 6% and 11% of the biomass derived from the Oscillatoria sp.- and Phormidium sp.-dominated mats was lost during the cycling. The cyanobacterial mats seem to have better potential than several biomass types for use in metal sorption from wastewaters as they are ubiquitous, self-immobilized, and have good reusability.  相似文献   

16.
For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.  相似文献   

17.
18.
Oxygen Responses and Mat Formation by Beggiatoa spp   总被引:3,自引:3,他引:0       下载免费PDF全文
The behavioral response of single Beggiatoa sp. filaments moving on a gas-permeable membrane was studied by the combined use of microscopy and oxygen microelectrodes during controlled oscillations of oxygen tension. The bacteria reacted to increasing oxygen by reversing the direction of movement. The same step-up phobic response to oxygen was observed when a filament tip or loop glided into a stable microgradient of increasing oxygen. The response was sensitive to a change in oxygen tension of <5% of air saturation min−1. The response time was 20 to 50 s. Frequently, only part of the filament responded, which led to the formation of sharp bends, loops, and coils. This partial response facilitated the positioning of the long filaments within the narrow O2-H2S interface. The structure of whole Beggiatoa mats on sediment surfaces varied from loose to dense in relation to shallow or steep oxygen gradients in the 0.3- to 2-mm-thick, unstirred boundary layer. In an illuminated sediment Beggiatoa spp. lived together with photosynthetic organisms and migrated vertically in accordance with light/dark variations. The combined effect of phobic responses to light and oxygen can explain this migration.  相似文献   

19.
Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures typically used in benthic viral ecology were applied to the complex matrix of microbial mats but were found to inefficiently extract viruses. Here, we present a method for extraction and quantification of viruses from photosynthetic microbial mats using epifluorescence microscopy (EFM) and flow cytometry (FCM). A combination of EDTA addition, probe sonication, and enzyme treatment applied to a glutaraldehyde-fixed sample resulted in a substantially higher viral (5- to 33-fold) extraction efficiency and reduced background noise compared to previously published methods. Using this method, it was found that in general, intertidal photosynthetic microbial mats harbor very high viral abundances (2.8 × 1010 ± 0.3 × 1010 g−1) compared with benthic habitats (107 to 109 g−1). This procedure also showed 4.5- and 4-fold-increased efficacies of extraction of viruses and bacteria, respectively, from intertidal sediments, allowing a single method to be used for the microbial mat and underlying sediment.  相似文献   

20.
Soybean (Glycine max [L.] Merr. cv Hobbit) plants were grown in a growth chamber for 56 days in a phosphorus- and nitrogen-deficient soil and were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd) Gerd. and Trappe and Rhizobium japonicum strain USDA 136, or by either organism alone, or by neither. Non-VAM plants received supplemental phosphorus and nonnodulated plants supplemental nitrogen to achieve the same rate of growth in all treatments. Plants of all four treatments had the same (P > 0.05) dry weights at harvest, but VAM plants had higher rates of CO2 exchange (CER, P < 0.05) and lower leaf P concentrations (P < 0.01). Leaf nitrogen concentrations were lower in nodulated than in nitrogen-supplemented plants (P < 0.01) while starch concentrations were higher (P < 0.01). There was a significant negative relationship between nitrogen and starch (r = −0.989). Statistical evaluation of the data showed that some parameters (CER, leaf area and phosphorus content) were associated with phosphorus nutrition (or the presence of the VAM fungus), others (leaf fresh weight and root dry weight) with nitrogen nutrition (or the presence of Rhizobium), and some (leaf nitrogen and starch content) by both factors. The development of microsymbiont structures and nodule activity were significantly lower in the tripartite association than in plants colonized by one endophyte only. The findings suggest that endophyte effects go beyond those of simple nutrition and associated source-sink relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号