首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptor kinases (GRKs) mediate agonist-induced phosphorylation and desensitization of various G protein-coupled receptors (GPCRs). We investigate the role of GRK2 on epidermal growth factor (EGF) receptor signaling, including EGF-induced extracellular signal-regulated kinase and mitogen-activated protein kinase (ERK/MAPK) activation and EGFR internalization. Immunoprecipitation and immunofluorescence experiments show that EGF stimulates GRK2 binding to EGFR complex and GRK2 translocating from cytoplasm to the plasma membrane in human embryonic kidney 293 cells. Western blotting assay shows that EGF-induced ERK/MAPK phosphorylation increases 1.9-fold, 1.1-fold and 1.5fold (P〈0.05) at time point 30, 60 and 120 min, respectively when the cells were transfected with GRK2,suggesting the regulatory role of GRK2 on EGF-induced ERK/MAPK activation. Flow cytometry experiments show that GRK2 overexpression has no effect on EGF-induced EGFR internalization, however, it increases agonist-induced G protein-coupled δ5 opioid receptor internalization by approximately 40% (P〈0.01). Overall,these data suggest that GRK2 has a regulatory role in EGF-induced ERK/MAPK activation, and that the mechanisms underlying the modulatory role of GRK2 in EGFR and GPCR signaling pathways are somewhat different at least in receptor internalization.  相似文献   

2.
The objective of the present studies was to determine the localization of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in testicular tissue collected from male alpacas at 12 and 24 months of age. In the testes of 12-month-old alpacas, positive staining for EGF was not detected. EGFR was localized to Leydig cells within the 12-month-old alpaca testis, but staining was absent within seminiferous tubules. At 24 months of age, EGF was localized to Leydig cells, peritubular myoid cells, Sertoli cells and germ cells of the alpaca testis, with a preferential adluminal compartment staining within the seminiferous tubules. EGFR was also localized to the Leydig cells, peritubular myoid cells, Sertoli cells and germ cells within the 24-month-old alpaca testis, but staining within the tubules was primarily within the basal compartment. Results indicate distinct temporal and spatial regulation of EGF and EGFR in the alpaca testis and support a potential role for EGF and its related ligands in alpaca testis development and spermatogenesis.  相似文献   

3.
Insulin is an essential hormone for cell growth and potentiates the mitogenic actions of multiple growth factors, including EGF. While potentiation has been shown to be mediated by the upregulation of the cyclin/CDK system, the upstream mechanisms of such synergy have not been elucidated. Our study has examined whether insulin could mediate synergy by enhancing early signaling events of the EGF receptor (EGFR). Tyrosine phosphorylation at the cell periphery of confluent Swiss 3T3 fibroblasts induced by EGF was potentiated by insulin within 2 min of stimulation. Insulin potentiation of EGF-mediated phosphorylation of the EGFR occurred 2 min after stimulation. EGFR transactivation by insulin was not observed. In addition, downstream mitogenic signaling events including ERK1/2 activation and Elk-1 phosphorylation were enhanced in response to insulin and EGF coadministration. This study shows mitogenic synergy between insulin and EGF can occur at the earliest signaling event, receptor phosphorylation, and independent of transactivation.  相似文献   

4.
Mucin production by epithelial cells is modulated by many soluble factors, including epidermal growth factor (EGF). E-Cadherin promotes EGF receptor (EGFR)-mediated MUC5AC mucin production in airway epithelial cells in dense cultures, suggesting the involvement of E-cadherin in activating EGFRs and mucin production. However, the role of E-cadherin in modulating mucin production is not completely understood. We examined its role in MUC5AC production in a human lung epithelial cell line, NCI-H292. Treatment of low density NCI-H292 cells with an anti-E-cadherin monoclonal antibody (SHE78-7) inhibited cell-cell contact in the dispersed colonies, but promoted MUC5AC production. Furthermore, treatment of the NCI-H292 cells with anti-E-cadherin antibody stimulated phosphorylation of extracellular signal-regulated kinase (ERK). The enhanced production of MUC5AC was inhibited with an EGFR inhibitor and with a MEK inhibitor, but not with a Src family kinase inhibitor. These results suggest that inhibition of E-cadherin activates EGFRs independently of Src and promotes MUC5AC production through the ERK signaling pathway in sparsely cultured NCI-H292 cells.  相似文献   

5.
Regulation of the epidermal growth factor receptor by phosphorylation   总被引:5,自引:0,他引:5  
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function.  相似文献   

6.
7.
Tea polyphenols are known to inhibit a wide variety of enzymatic activities associated with cell proliferation and tumor progression. The molecular mechanisms of antiproliferation are remained to be elucidated. In this study, we investigated the effects of the major tea polyphenol (−)-epigallocatechin gallate (EGCG) on the proliferation of human epidermoid carcinoma cell line, A431. Using a [3H]thymidine incorporation assay, EGCG could significantly inhibit the DNA synthesis of A431 cells. In vitro assay, EGCG strongly inhibited the protein tyrosine kinase (PTK) activities of EGF-R, PDGF-R, and FGF-R, and exhibited an IC50 value of 0.5–1 μg/ml. But EGCG scarcely inhibited the protein kinase activities of pp60v-src, PKC, and PKA (IC50 > 10 μg/ml). In an in vivo assay, EGCG could reduce the autophosphorylation level of EGF-R by EGF. Phosphoamino acid analysis of the EGF-R revealed that EGCG inhibited the EGF-stimulated increase in phosphotyrosine level in A431 cells. In addition, we showed that EGCG blocked EGF binding to its receptor. The results of further studies suggested that the inhibition of proliferation and suppression of the EGF signaling by EGCG might mainly mediate dose-dependent blocking of ligand binding to its receptor, and subsequently through inhibition of EGF-R kinase activity. J. Cell. Biochem. 67:55–65, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.  相似文献   

9.
Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.  相似文献   

10.
Tyrphostin AG1478 is known as a specific and reversible inhibitor of TK (tyrosine kinase) activity of the EGFR [EGF (epidermal growth factor) receptor]. It is attractive as an anticancer agent for cancers with elevated EGFR TK levels. However, post‐application effects of AG1478 are not well studied. We have analysed EGFR phosphorylation after termination of AG1478 application using human epidermoid carcinoma A431 cells. It was found that AG1478 inhibitory action is fast, but not fully reversible: removal of tyrphostin resulted in incomplete restoration of the overall EGFR phosphorylation. Analysing the state of two individual autophosphorylation sites of internalized EGFR, Tyr1045 and Tyr1173, we demonstrated that phosphorylation of Tyr1173 involved in stimulation of the MAPK (mitogen‐activated protein kinase) cascade was restored much more efficiently than that in position 1045, which binds the ubiquitin ligase c‐Cbl and is necessary for targeting the receptor for lysosomal degradation. c‐Cbl association with EGFR abolished by AG1478 was not reestablished after tyrphostin cessation. As a consequence, ubiquitination‐dependent EGFR delivery to lysosomes was blocked, while phosphorylation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) was even increased. Thus, after termination of AG1478, the intracellular level of the inhibitor can be reached at which mitogenic signalling will be restored, whereas the EGFR negative regulation due to lysosomal degradation will not.  相似文献   

11.
作者以免疫组织化学技术对大鼠肺组织内表皮生长因子受体(EGFR)进行了定位研究.结果显示 EGFR 广泛分布于支气管粘膜上皮细胞、肺泡细胞、血管内皮下结缔组织和血管平滑肌细胞上。其提示 EGF 通过作用于肺组织内的特异性 EGFR 而发挥其生理和/或病理学功能。  相似文献   

12.
Epidermal growth factor (EGF) receptor plays a pivotal role in a variety of cellular functions, such as proliferation, differentiation, and migration. To monitor the EGF receptor (EGFR) activity in living cells, we developed a probe for EGFR activity based on the principle of fluorescence resonance energy transfer (FRET). Previously, we developed a probe designated as Picchu (Phosphorylation indicator of the CrkII chimeric unit), which detects the tyrosine phosphorylation of the CrkII adaptor protein. We used a pair of synthetic amphipathic helixes, WinZipA2 and WinZipB1, to bind Picchu non-covalently to the carboxyl-terminus of the EGFR. Using this modified probe named Picchu-Z, the activity of EGFR was followed in EGF-stimulated Cos7 cells. We found that a high level of tyrosine phosphorylation of Picchu-Z probe remained after endocytosis until the point when the EGFR was translocated to the perinuclear region. These findings are in agreement with the previously reported "signaling endosome" model. Furthermore, by pulse stimulation with EGF and by acute ablation of EGFR activity with AG1478, it was suggested that the phosphorylation of Picchu-Z probe, and probably the phosphorylation of EGFR also, underwent a rapid equilibrium (tau(1/2) < 2 min) between the phosphorylated and dephosphorylated states in the presence of EGF.  相似文献   

13.
Gain-of-function mutations in the canonical transient receptor potential 6 (TRPC6) gene are a cause of autosomal dominant focal segmental glomerulosclerosis (FSGS). The mechanisms whereby abnormal TRPC6 activity results in proteinuria remain unknown. The ERK1/2 MAPKs are activated in glomeruli and podocytes in several proteinuric disease models. We therefore examined whether FSGS-associated mutations in TRPC6 result in activation of these kinases. In 293T cells and cultured podocytes, overexpression of gain-of-function TRPC6 mutants resulted in increased ERK1/2 phosphorylation, an effect dependent upon channel function. Pharmacologic inhibitor studies implicated several signaling mediators, including calmodulin and calcineurin, supporting the importance of TRPC6-mediated calcium influx in this process. Through medium transfer experiments, we uncovered two distinct mechanisms for ERK activation by mutant TRPC6, a cell-autonomous, EGF receptor-independent mechanism and a non-cell-autonomous mechanism involving metalloprotease-mediated release of a presumed EGF receptor ligand. The inhibitors KN-92 and H89 were able to block both pathways in mutant TRPC6 expressing cells as well as the prolonged elevation of intracellular calcium levels upon carbachol stimulation seen in these cells. However, these effects appear to be independent of their effects on calcium/calmodulin-dependent protein kinase II and PKA, respectively. Phosphorylation of Thr-70, Ser-282, and Tyr-31/285 were not necessary for ERK activation by mutant TRPC6, although a phosphomimetic TRPC6 S282E mutant was capable of ERK activation. Taken together, these results identify two pathways downstream of mutant TRPC6 leading to ERK activation that may play a role in the development of FSGS.  相似文献   

14.
Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)-α causes receptor recycling. TGF-α therefore leads to continuous signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-α, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking.
We have compared the effect of six different ligands on endocytic trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-α and epiregulin lead to complete receptor recycling. EGF leads to lysosomal degradation of the majority but not all EGFRs. Amphiregulin does not target EGFR for lysosomal degradation but causes fast as well as slow EGFR recycling. The Cbl ubiquitin ligases, especially c-Cbl, are responsible for EGFR ubiquitination after stimulation with all ligands, and persistent EGFR phosphorylation and ubiquitination largely correlate with receptor degradation.  相似文献   

15.
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.  相似文献   

16.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

17.
Objective: Epidermal growth factor (EGF) stimulates proliferation in 3T3‐L1 preadipocytes, but EGF action in differentiation is less clear. EGF promotes differentiation at concentrations <1 nM but inhibits differentiation at higher concentrations, suggesting a dual role in adipogenesis. We hypothesized that differences in EGF receptor activation and downstream signaling mediate distinct biological effects of EGF at low vs. high abundance. Research Methods and Procedures: We compared the effects of low (0.1 nM) vs. high (10 nM) EGF on the activation of EGF receptors, proximal signaling molecules Src and Shc, and the downstream mitogen‐activated protein kinase (MAPK) pathways extracellular regulated kinase (ERK) and p38 in proliferating and differentiated 3T3‐L1 cells. Results: Both low and high EGF activated ERK and p38 in preadipocytes. Src inhibitors PP1 and PP2 blocked ERK and p38 activation by low but not high EGF, and only high EGF increased Shc phosphorylation. Selective inhibition of the EGF receptor (EGFR) with AG1478 blocked ERK and p38 activation at both concentrations; however, selective inhibition of the ErbB2 receptor (EB2R) with AG825 or small interfering RNA (siRNA) blocked low but not high EGF activation of ERK and p38. Coimmunoprecipitation of EGFR with EB2R and Src was observed with low EGF in preadipocytes but at both concentrations in adipocytes. EB2R inhibition during differentiation decreased p38 activity and peroxisome proliferator‐activated receptor γ (PPARγ) abundance. Discussion: Our results show that EGFR homodimers mediate action of EGF at high abundance, but at low abundance, EGF promotes differentiation through EGFR/EB2R heterodimer activation of Src and p38. These results may partially explain the observations that high EGF concentrations inhibit, whereas low concentrations support, preadipocyte differentiation.  相似文献   

18.
Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti–EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti–EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated.  相似文献   

19.
Many different intercellular signaling pathways are known but, for most, it is unclear whether they can generate oscillating cell behaviors. Here we use time-lapse analysis of Drosophila embryogenesis to show that oenocytes delaminate from the ectoderm in discrete bursts of three. This pulsatile process has a 1 hour period, occurs without cell division, and requires a localized EGF receptor (EGFR) response. High-threshold EGFR targets are sequentially activated in rings of three cells, prefiguring the temporal pattern of delamination. Surprisingly, widespread misexpression of the relevant activating ligand, Spitz, is compatible with robust delamination pulses. Moreover, although Spitz ligand becomes limiting after only two pulses, artificially prolonging its secretion generates up to six additional cycles, revealing a rhythmic underlying mechanism. These findings illustrate how intercellular signaling and cell movements can generate multiple cycles of a cell behavior, despite individual cells experiencing only one cycle of receptor activation.  相似文献   

20.
Protein kinase C ε (PKCε) is a transforming oncogene and plays a pivotal role in numerous cellular processes including proliferation, invasion and differentiation. Recently, we described a function of PKCε as a scaffold protein linking PLCγ1 to the EGFR module. Here, in the head and neck squamous carcinoma cell line (HNSCC) FaDu we demonstrate that over-expressed PKCε may be associated with the EGFR. This is linked with the consecutive inhibition of the recruitment of PLCγ1 to the EGFR, of the catalytical activation of PLCγ1 by EGF, and of the PLCγ1-mediated effect of EGF on cell proliferation. These effects are independent of the catalytical as well as the scaffold activity of PKCε but are a function of the cellular expression level of PKCε. In contrast to FaDu cells where the PLCγ1 pathway was selectively affected, in three other HNSCC cell lines investigated over-expression of PKCε resulted in association with EGFR and, subsequently, in either partial (ERK and Akt or PLCγ1 and Akt) or complete (ERK, PLCγ1 and Akt) inhibition of the main EGFR signalling pathways. Together, our data suggest that in particular carcinoma cells highly expressed PKCε may act as negative allosteric modulator of EGFR signalling. This novel function of PKCε provides also the first indication that the EGFR may be a target for allosteric modulation by accessory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号