首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Immediately upstream from and adjacent to the oprP gene, which codes for the phosphate-specific porin OprP of Pseudomonas aeruginosa, lies the PR region (oprO), which cross-hybridizes with oprP DNA. To determine the function of this region, the oprO gene was expressed behind the lactose promoter in Escherichia coli, and the resultant OprO protein was purified and reconstituted into planar lipid bilayers. OprO formed sodium dodecyl sulfate-stable trimers, cross-reacted immunologically with OprP, and, like OprP, formed an anion-specific, phosphate-selective porin. However, it demonstrated lower affinity for and higher maximal conductance of both chloride and phosphate than did the OprP channel. Examination by macroscopic conductance inhibition experiments of the affinity of OprO for phosphates of different lengths revealed a preference for PPi and tripolyphosphate over Pi, suggesting that OprO functioned as a PPi-selective polyphosphate channel, in contrast to OprP, which has a marked preference for Pi.  相似文献   

2.
The oprO gene of Pseudomonas aeruginosa codes for a polyphosphate-specific porin and terminates 458 bp upstream of the start codon for the phosphate-specific porin OprP. OprO was found to be expressed only under phosphate-starvation conditions in both wild-type and oprP::Tn501 mutant P. aeruginosa strains. However, unlike the rest of the genes of the Pho regulon, including oprP, expression of oprO required cells to be in the stationary growth phase in addition to phosphate starvation. Wild-type P. aeruginosa cells were grown in fermentor culture under these conditions and fractionated by selective solubilization in octylpolyoxyethylene detergent solution. Solubilized OprO was separated from OprP by application to a Mono Q FPLC column and elution with a salt gradient and shown to be functionally identical to cloned OprO produced in Escherichia coli. DNA sequencing of oprO showed the gene product to be highly homologous to OprP, with 76% identity and 16% conserved substitutions. Most genes of the Pho regulon possess a modified -35 region called the Pho box. Two such elements, separated by 4 bp were found in oprO. DNA sequencing also revealed a second Pho box in the oprP gene with the same spacing.  相似文献   

3.
Pseudomonas aeruginosa is a Gram-negative bacterium with an intrinsic resistance towards antibiotics due to the lack of a large diffusion pores. Exchange of substances with the environment is done mainly through a set of narrow and substrate-specific porins in its outer membrane that filter molecules according to their size and chemical composition. Among these proteins are OprP and OprO involved in the selective uptake of mono- and pyrophosphates, respectively. Both proteins are homotrimers and each monomer features an hourglass-shaped channel structure including a periplasmic cavity with a lysine cluster. In this study, we focus on the characterization of this lysine cluster in OprO. The importance of these lysine residues was shown with alanine substitutions in single channel conductance experiments, by titration of mono- and pyrophosphate in multi-channel analysis and by molecular dynamics simulations. All obtained data demonstrated that the closer the mutated lysine residues are to arginine 133, the lower gets the single channel conductance. It was found that the ion flow through each monomer can follow two different lysine paths indicating that phosphate ions have a larger freedom on the periplasmic side of the constriction region. Our results emphasize the important role of the lysine residue 121 in the binding site together with arginine 133 and aspartic acid 94. An improved understanding of the ion mobility across these channels can potentially lead to an optimized permeation of (phosphonic acid containing) antibiotics through the outer membrane of P. aeruginosa and the development of new drug molecules.  相似文献   

4.
A rhodopsin-based homology model of the P2Y14 receptor was inserted into a phospholipid bilayer and refined by molecular dynamics (MD) simulation. The binding modes of several known agonists, namely UDP-glucose and its analogues, were proposed using automatic molecular docking combined with Monte Carlo Multiple Minimum calculations. Compared to other P2Y receptors, the P2Y14 receptor has an atypical binding mode of the nucleobase, ribose, and phosphate moieties. The diphosphate moiety interacts with only one cationic residue, namely Lys171 of EL2, while in other P2Y receptor subtypes three Arg or Lys residues interact with the phosphate chain. Two other conserved cationic residues, namely Arg253 (6.55) and Lys277 (7.35) of the P2Y14 receptor together with two anionic residues (Glu166 and Glu174, located in EL2), are likely involved in interactions with the distal hexose moiety.  相似文献   

5.
Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM‐PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Pharmacological inhibition of cardiac hERG K(+) channels is associated with increased risk of lethal arrhythmias. Many drugs reduce hERG current by directly binding to the channel, thereby blocking ion conduction. Mutation of two aromatic residues (F656 and Y652) substantially decreases the potency of numerous structurally diverse compounds. Nevertheless, some drugs are only weakly affected by mutation Y652A. In this study we utilize molecular dynamics simulations and docking studies to analyze the different effects of mutation Y652A on a selected number of hERG blockers. MD simulations reveal conformational changes in the binding site induced by mutation Y652A. Loss of π-π-stacking between the two aromatic residues induces a conformational change of the F656 side chain from a cavity facing to cavity lining orientation. Docking studies and MD simulations qualitatively reproduce the diverse experimentally observed modulatory effects of mutation Y652A and provide a new structural interpretation for the sensitivity differences.  相似文献   

7.
The outer membrane protein OprP mediates the transport of essential phosphate anions into the pathogenic bacterium Pseudomonas aeruginosa. Here we report the crystallographic structure of trimeric OprP at 1.9-A resolution, revealing an unprecedented 9-residue arginine 'ladder' that spans from the extracellular surface down through a constriction zone where phosphate is coordinated. Lysine residues coat the inner periplasmic surface, creating an 'electropositive sink' that pulls the phosphates through the eyelet and into the cell.  相似文献   

8.
Cheon YH  Park HS  Kim JH  Kim Y  Kim HS 《Biochemistry》2004,43(23):7413-7420
We previously proposed that the stereochemistry gate loops (SGLs) constituting the substrate binding pocket of D-hydantoinase, a (beta/alpha)(8)-barrel enzyme, might be major structural determinants of the substrate specificity [Cheon, Y. H., et al. (2002) Biochemistry 41, 9410-9417]. To construct a mutant D-hydantoinase with favorable substrate specificity for the synthesis of commercially important non-natural amino acids, the SGL loops of the enzyme were rationally manipulated on the basis of the structural analysis and sequence alignment of three hydantoinases with distinct substrate specificities. In the SGLs of D-hydantoinase from Bacillus stearothermophilus SD1, mutations of hydrophobic and bulky residues Met 63, Leu 65, Phe 152, and Phe 159, which interact with the exocyclic substituent of the substrate, induced remarkable changes in the substrate specificities. In particular, the substrate specificity of mutant F159A toward aromatic substrate hydroxyphenylhydantoin (HPH) was enhanced by approximately 200-fold compared with that of the wild-type enzyme. Saturation mutagenesis at position 159 revealed that k(cat) for aromatic substrates increased gradually as the size of the amino acid side chain decreased, and this seems to be due to reduced steric hindrance between the bulky exocyclic group of the substrate and the amino acid side chains. When site-directed random mutagenesis of residues 63 and 65 was conducted with the wild type and mutant F159A, the selected enzymes (M63F/L65V and L65F/F159A) exhibited approximately 10-fold higher k(cat) values for HPH than the wild-type counterpart, which is likely to result from reorganization of the active site for efficient turnover. These results indicate that the amino acid residues of SGLs forming the substrate binding pocket are critical for the substrate specificity of D-hydantoinase, and the results also imply that substrate specificities of cyclic amidohydrolase family enzymes can be modulated by rational design of these SGLs.  相似文献   

9.
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, the building blocks of DNA. RNRs are specific for either ribonucleoside diphosphates or triphosphates as substrates. As far as is known, oxygen-dependent class I RNRs (NrdAB) all reduce ribonucleoside diphosphates, and oxygen-sensitive class III RNRs (NrdD) are all ribonucleoside triphosphate reducers, whereas the adenosylcobalamin-dependent class II (NrdJ) contains both ribonucleoside diphosphate and triphosphate reducers. However, it is unknown how this specificity is conveyed by the active site of the enzymes and how this feature developed in RNR evolution. By structural comparison of the active sites in different RNRs, we identified the apical loop of the phosphate-binding site as a potential structural determinant of substrate specificity. Grafting two residues from this loop from a diphosphate- to a triphosphate-specific RNR caused a change in preference from ribonucleoside triphosphate to diphosphate substrates in a class II model enzyme, confirming them as the structural determinants of phosphate specificity. The investigation of the phylogenetic distribution of this motif in class II RNRs yielded a likely monophyletic clade with the diphosphate-defining motif. This indicates a single evolutionary-split event early in NrdJ evolution in which diphosphate specificity developed from the earlier triphosphate specificity. For those interesting cases where organisms contain more than one nrdJ gene, we observed a preference for encoding enzymes with diverse phosphate specificities, suggesting that this varying phosphate specificity confers a selective advantage.  相似文献   

10.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

11.
RDL receptors are GABA-activated inhibitory Cys-loop receptors found throughout the insect CNS. They are a key target for insecticides. Here, we characterize the GABA binding site in RDL receptors using computational and electrophysiological techniques. A homology model of the extracellular domain of RDL was generated and GABA docked into the binding site. Molecular dynamics simulations predicted critical GABA binding interactions with aromatic residues F206, Y254, and Y109 and hydrophilic residues E204, S176, R111, R166, S176, and T251. These residues were mutated, expressed in Xenopus oocytes, and their functions assessed using electrophysiology. The data support the binding mechanism provided by the simulations, which predict that GABA forms many interactions with binding site residues, the most significant of which are cation-π interactions with F206 and Y254, H-bonds with E204, S205, R111, S176, T251, and ionic interactions with R111 and E204. These findings clarify the roles of a range of residues in binding GABA in the RDL receptor, and also show that molecular dynamics simulations are a useful tool to identify specific interactions in Cys-loop receptors.Abbreviations used: nACh, nicotinic acetylcholine; AChBP, acetylcholine binding protein; GABA, gamma-aminobutyric acid; MD, molecular dynamics; RDL, resistant to dieldrin; RMSD, root mean-square displacement; RMSF, root mean-square fluctuation  相似文献   

12.
Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is poorly understood. A member of the major facilitator superfamily is the glycerol-3-phosphate (G3P) transporter (GlpT) from the Escherichia coli inner membrane. GlpT is an antiporter that transports G3P into the cell in exchange for inorganic phosphate (Pi). By combining large-scale molecular-dynamics simulations, mutagenesis, substrate-binding affinity, and transport activity assays on GlpT, we were able to identify key amino acid residues that confer substrate specificity upon this protein. Our studies suggest that only a few amino acid residues that line the transporter lumen act as specificity determinants. Whereas R45, K80, H165, and, to a lesser extent Y38, Y42, and Y76 contribute to recognition of both free Pi and the phosphate moiety of G3P, the residues N162, Y266, and Y393 function in recognition of only the glycerol moiety of G3P. It is the latter interactions that give the transporter a higher affinity to G3P over Pi.  相似文献   

13.
Noelle V  Tennagels N  Klein HW 《Biochemistry》2000,39(24):7170-7177
We examined the effects of mutations of tyrosine and serine autophosphorylation sites on the dual specificity of the insulin receptor kinase (IRKD) in vitro using autophosphorylation and substrate phosphorylation and phosphopeptide mapping. For comparable studies, the recombinant kinases were overexpressed in the baculovirus system, purified, and analyzed. The phosphate incorporation into the enzymes was in the range of 3-4.5 mol/mol, and initial velocities of autophosphorylation were reduced up to 2-fold. However, the mutation Y1151F in the activation loop inhibited phosphate incorporation in the C-terminal serine residues 1275 and 1309, due to a 10-fold decrease of the initial velocity of serine autophosphorylation. Although the K(M) and V(MAX) values of this mutant were only slightly altered in substrate phosphorylation reactions using a recombinant C-terminal insulin receptor peptide (K(M): Y1151F, 9.9 +/- 0.4 microM; IRKD, 6.1 +/- 0.2 microM; V(MAX): Y1151F, 72 +/- 4 nmol min(-)(1) mg(-)(1); IRKD, 117 +/- 6 nmol min(-)(1) mg(-)(1)), diminished phosphate incorporation into serine residues of the peptide was observed. In contrast, the phosphorylation of a recombinant IRS-1 fragment, which was shown to be phosphorylated markedly on serine residues by IRKD, was not affected by any kinase mutation. These results underline that IRKD is a kinase with dual specificity. The substrate specificity toward C-terminal serine phosphorylation sites can be modified by a single amino acid substitution in the activation loop, whereas the specificity toward IRS-1 is not affected, suggesting that the C-terminus and the activation loop interact.  相似文献   

14.
PDEδ is a small protein that binds and controls the trafficking of RAS subfamily proteins. Its inhibition protects initiation of RAS signaling, and it is one of the common targets considered for oncological drug development. In this study, we used solved x-ray structures of inhibitor-bound PDEδ targets to investigate mechanisms of action of six independent all-atom MD simulations. An analysis of atomic simulations combined with the molecular mechanic-Poisson-Boltzmann solvent accessible surface area/generalized Born solvent accessible surface area calculations led to the identification of action mechanisms for a panel of novel PDEδ inhibitors. To the best of our knowledge, this study is one of the first in silico investigations on co-crystallized PDEδ protein. A detailed atomic-scale understanding of the molecular mechanism of PDEδ inhibition may assist in the design of novel PDEδ inhibitors. One of the most common side effects for diverse small molecules/kinase inhibitors is their off-target interactions with cardiac ion channels and human-ether-a-go-go channel specifically. Thus, all of the studied PDEδ inhibitors are also screened in silico at the central cavities of hERG1 potassium channels.  相似文献   

15.
PDEδ is a small protein that binds and controls the trafficking of RAS subfamily proteins. Its inhibition protects initiation of RAS signaling, and it is one of the common targets considered for oncological drug development. In this study, we used solved x-ray structures of inhibitor-bound PDEδ targets to investigate mechanisms of action of six independent all-atom MD simulations. An analysis of atomic simulations combined with the molecular mechanic-Poisson-Boltzmann solvent accessible surface area/generalized Born solvent accessible surface area calculations led to the identification of action mechanisms for a panel of novel PDEδ inhibitors. To the best of our knowledge, this study is one of the first in silico investigations on co-crystallized PDEδ protein. A detailed atomic-scale understanding of the molecular mechanism of PDEδ inhibition may assist in the design of novel PDEδ inhibitors. One of the most common side effects for diverse small molecules/kinase inhibitors is their off-target interactions with cardiac ion channels and human-ether-a-go-go channel specifically. Thus, all of the studied PDEδ inhibitors are also screened in silico at the central cavities of hERG1 potassium channels.  相似文献   

16.
In Aspergillus nidulans, purine uptake is mediated by three transporter proteins: UapA, UapC and AzgA. UapA and UapC have partially overlapping functions, are 62% identical and have nearly identical predicted topologies. Their structural similarity is associated with overlapping substrate specificities; UapA is a high-affinity, high-capacity specific xanthine/uric acid transporter. UapC is a low/moderate-capacity general purine transporter. We constructed and characterized UapA/UapC, UapC/UapA and UapA/UapC/UapA chimeric proteins and UapA point mutations. The region including residues 378-446 in UapA (336-404 in UapC) has been shown to be critical for purine recognition and transport. Within this region, we identified: (i) one amino acid residue (A404) important for transporter function but probably not for specificity and two residues (E412 and R414) important for UapA function and specificity; and (ii) a sequence, (F/Y/S)X(Q/E/P) NXGXXXXT(K/R/G), which is highly conserved in all homologues of nucleobase transporters from bacteria to man. The UapC/UapA series of chimeras behaves in a linear pattern and leads to an univocal assignment of functional domains while the analysis of the reciprocal and 'sandwich' chimeras revealed unexpected inter-domain interactions. cDNAs coding for transporters including the specificity region defined by these studies have been identified for the first time in the human and Caenorhabditis elegans databases.  相似文献   

17.
We present molecular dynamics (MD) simulations on two enzymes: a human hypoxanthine-guanine-phosphoribosyltransferase (HGPRTase) and its analogue in the protozoan parasite Tritrichomonas foetus. The parasite enzyme has an additional ability to process xanthine as a substrate, making it a hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase) [Chin, M. S., and Wang, C. C. (1994) Mol. Biochem. Parasitol. 63 (2), 221-229 (1)]. X-ray crystal structures of both enzymes complexed to guanine monoribosyl phosphate (GMP) have been solved, and show only subtle differences in the two active sites [Eads et al. (1994) Cell 78 (2), 325-334 (2); Somoza et al. (1996) Biochemistry 35 (22), 7032-7040 (3)]. Most of the direct contacts with the base region of the substrate are made by the protein backbone, complicating the identification of residues significantly associated with xanthine recognition. Our calculations suggest that the broader specificity of the parasite enzyme is due to a significantly more flexible base-binding region, and rationalize the effect of two mutations, R155E and D163N, that alter substrate specificity [Munagala, N. R., and Wang, C. C. (1998) Biochemistry 37 (47), 16612-16619 (4)]. In addition, our simulations suggested a double mutant (D106E/D163N) that might rescue the D163N mutant. This double mutant was expressed and assayed, and its catalytic activity was confirmed. Our molecular dynamics trajectories were also used with a structure-based design program, Pictorial Representation Of Free Energy Changes (PROFEC), to suggest parasite-selective derivatives of GMP. Our calculations here successfully rationalize the parasite-selectivity of two novel inhibitors derived from the computer-aided design of Somoza et al. (5) and demonstrate the utility of PROFEC in the design of species-selective inhibitors.  相似文献   

18.
mAb to rat cytochrome c (cyt c), totaling 556, were produced by individual clones of secondary B lymphocytes from nine groups of five BALB/c mice each in vitro using the splenic focus culture system. Inasmuch as rat and mouse cyt c are identical, these B cells can be considered specific for a self-antigen. The mAb were categorized into specificity groups based on their reactivities with a panel of seven cyts c that differ at two to six amino acid residues. The number of distinct specificities for the native protein was restricted to fewer than 20. Different groups of mice expressed the same specificities at comparable frequencies, including a single dominant one, and the total number of secondary cyt c-specific B cells was constant among groups of mice. This suggests that the acquisition of the secondary B cell specificity repertoire for this self-antigen is regulated. However, it is indeed possible that each specificity group may comprise a number of distinct mAb molecules that have arisen stochastically. Specificities expressed by as few as 1% of the total mAb were observed. Thus, it is likely that the identified specificities reflect the secondary B cell specificity repertoire for rat cyt c. The dominant specificity expressed by 50% of the mAb was characterized by elimination of antigen recognition as a result of replacement of aspartic acid by glutamic acid at position 62. Minor specificities expressed by 19% of the mAb were characterized by more subtle affects of an amino acid change at position 62 and/or an amino acid substitution from rat cyt c at position 60. Antibodies in other specificity groups reacted with epitopes in the region of residues 44 and 47. Whereas substitutions at positions 44, 47, 60, and 62 eliminated recognition by most of the mAb, changes at position 92 and at 103 also appeared to affect the binding of some mAb in the region around residues 60 and 62. The amino acid residues implicated in the recognition by murine mAb of murine cyt c have been shown previously to be involved in the epitopes of foreign mammalian cyt c. Therefore, self-tolerance cannot fully explain the restriction of the epitopes to these regions on foreign mammalian cyt c.  相似文献   

19.
NCS1 proteins are H+/Na+ symporters specific for the uptake of purines, pyrimidines and related metabolites. In this article, we study the origin, diversification and substrate specificity of fungal NCS1 transporters. We show that the two fungal NCS1 sub‐families, Fur and Fcy, and plant homologues originate through independent horizontal transfers from prokaryotes and that expansion by gene duplication led to the functional diversification of fungal NCS1. We characterised all Fur proteins of the model fungus Aspergillus nidulans and discovered novel functions and specificities. Homology modelling, substrate docking, molecular dynamics and systematic mutational analysis in three Fur transporters with distinct specificities identified residues critical for function and specificity, located within a major substrate binding site, in transmembrane segments TMS1, TMS3, TMS6 and TMS8. Most importantly, we predict and confirm that residues determining substrate specificity are located not only in the major substrate binding site, but also in a putative outward‐facing selective gate. Our evolutionary and structure‐function analysis contributes in the understanding of the molecular mechanisms underlying the functional diversification of eukaryotic NCS1 transporters, and in particular, forward the concept that selective channel‐like gates might contribute to substrate specificity.  相似文献   

20.
The substrate specificity of the beta-glucosidase (CelB) from the hyperthermophilic archaeon Pyrococcus furiosus, a family 1 glycosyl hydrolase, has been studied at a molecular level. Following crystallization and X-ray diffraction of this enzyme, a 3.3 A resolution structural model has been obtained by molecular replacement. CelB shows a homo-tetramer configuration, with subunits having a typical (betaalpha)(8)-barrel fold. Its active site has been compared to the one of the previously determined 6-phospho-beta-glycosidase (LacG) from the mesophilic bacterium Lactococcus lactis. The overall design of the substrate binding pocket is very well conserved, with the exception of three residues that have been identified as a phosphate binding site in LacG. To verify the structural model and alter its substrate specificity, these three residues have been introduced at the corresponding positions in CelB (E417S, M424K, F426Y) in different combinations: single, double, and triple mutants. Characterization of the purified mutant CelB enzyme revealed that F426Y resulted in an increased affinity for galactosides, whereas M424K gave rise to a shifted pH optimum (from 5.0 to 6.0). Analysis of E417S revealed a 5-fold and a 3-fold increase of the efficiency of hydrolyzing o-nitrophenol-beta-D-galactopyranoside-6-phosphate, in the single and triple mutants, respectively. In contrast, their activity on nonphosphorylated sugars was largely reduced (30-300-fold). The residue at position E417 in CelB seems to be the determining factor for the difference in substrate specificity between the two types of family 1 glycosidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号