首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

The pathophysiology of acute kidney injury (AKI) after cardiac surgery is not completely understood. Recent evidence suggests a pivotal role for the endothelium in AKI. In experimental models of AKI, the endothelial specific receptor Tie2 with its ligands Angiopoietin (Ang) 1 and Ang2 are deranged. This study investigates their status after cardiac surgery, and a possible relation between angiopoietins and AKI.

Methods

From a cohort of 541 patients that underwent cardiac surgery, blood and urine was collected at 5 predefined time points. From this cohort we identified 21 patients who had at least 50% post-operative serum creatinine increase (AKI). We constructed a control group (n = 21) using propensity matching. Systemic levels of Ang1, Ang2, and sTie2 were measured in plasma and the AKI markers albumin, kidney injury molecule-1 (KIM-1) and N-acetyl-beta-D-glucosaminidase (NAG) were measured in the urine.

Results

Ang2 plasma levels increased over time in AKI (from 4.2 to 11.6 ng/ml) and control patients (from 3.0 to 6.7 ng/ml). Ang2 levels increased 1.7-fold more in patients who developed AKI after cardiac surgery compared to matched control patients. Plasma levels of sTie2 decreased 1.6-fold and Ang1 decreased 3-fold over time in both groups, but were not different between AKI and controls (Ang1 P = 0.583 and sTie2 P = 0.679). Moreover, we found a positive correlation between plasma levels of Ang2 and urinary levels of NAG.

Conclusions

The endothelial Ang/Tie2 system is in dysbalance in patients that develop AKI after cardiac surgery compared to matched control patients.  相似文献   

2.

Background

Epithelial cell death is a major contributor to fibrogenesis in the lung. In this study, we sought to determine the function of mitochondria and their clearance (mitophagy) in alveolar epithelial cell death and fibrosis.

Methods

We studied markers of mitochondrial injury and the mitophagy marker, PTEN-induced putative kinase 1 (PINK1), in IPF lung tissues by Western blotting, transmission electron microscopy (TEM), and immunofluorescence. In vitro experiments were carried out in lung epithelial cells stimulated with transforming growth factor-β1 (TGF-β1). Changes in cell function were measured by Western blotting, flow cytometry and immunofluorescence. In vivo experiments were performed using the murine bleomycin model of lung fibrosis.

Results

Evaluation of IPF lung tissue demonstrated increased PINK1 expression by Western blotting and immunofluorescence and increased numbers of damaged mitochondria by TEM. In lung epithelial cells, TGF-β1 induced mitochondrial depolarization, mitochondrial ROS, and PINK1 expression; all were abrogated by mitochondrial ROS scavenging. Finally, Pink1 -/- mice were more susceptible than control mice to bleomycin induced lung fibrosis.

Conclusion

TGF-β1 induces lung epithelial cell mitochondrial ROS and depolarization and stabilizes the key mitophagy initiating protein, PINK1. PINK1 ameliorates epithelial cell death and may be necessary to limit fibrogenesis.  相似文献   

3.

Background

Acute kidney injury (AKI) is serious and widespread across healthcare (1 in 7 hospital admissions) but recognition is often delayed causing avoidable harm. Nationwide automated biochemistry alerts for AKI stages 1-3 have been introduced in England to improve recognition. We explored how these alerts compared with clinical diagnosis in different hospital settings.

Methods

We used a large population cohort of 4464 patients with renal impairment. Each patient had case-note review by a nephrologist, using RIFLE criteria to diagnose AKI and chronic kidney disease (CKD). We identified and staged AKI alerts using the new national NHS England AKI algorithm and compared this with nephrologist diagnosis across hospital settings.

Results

Of 4464 patients, 525 had RIFLE AKI, 449 had mild AKI, 2185 had CKD (without AKI) and 1305 were of uncertain chronicity. NHS AKI algorithm criteria alerted for 90.5% of RIFLE AKI, 72.4% of mild AKI, 34.1% of uncertain cases and 14.0% of patients who actually had CKD.The algorithm identified AKI particularly well in intensive care (95.5%) and nephrology (94.6%), but less well on surgical wards (86.4%). Restricting the algorithm to stage 2 and 3 alerts reduced the over-diagnosis of AKI in CKD patients from 14.0% to 2.1%, but missed or delayed alerts in two-thirds of RIFLE AKI patients.

Conclusion

Automated AKI detection performed well across hospital settings, but was less sensitive on surgical wards. Clinicians should be mindful that restricting alerts to stages 2-3 may identify fewer CKD patients, but including stage 1 provides more sensitive and timely alerting.  相似文献   

4.

Objective

To provide novel insights on mitochondrial respiration in β-cells and the adaptive effects of hypoxia.

Methods and Design

Insulin-producing INS-1 832/13 cells were exposed to 18 hours of hypoxia followed by 20–22 hours re-oxygenation. Mitochondrial respiration was measured by high-resolution respirometry in both intact and permeabilized cells, in the latter after establishing three functional substrate-uncoupler-inhibitor titration (SUIT) protocols. Concomitant measurements included proteins of mitochondrial complexes (Western blotting), ATP and insulin secretion.

Results

Intact cells exhibited a high degree of intrinsic uncoupling, comprising about 50% of oxygen consumption in the basal respiratory state. Hypoxia followed by re-oxygenation increased maximal overall respiration. Exploratory experiments in peremabilized cells could not show induction of respiration by malate or pyruvate as reducing substrates, thus glutamate and succinate were used as mitochondrial substrates in SUIT protocols. Permeabilized cells displayed a high capacity for oxidative phosphorylation for both complex I- and II-linked substrates in relation to maximum capacity of electron transfer. Previous hypoxia decreased phosphorylation control of complex I-linked respiration, but not in complex II-linked respiration. Coupling control ratios showed increased coupling efficiency for both complex I- and II-linked substrates in hypoxia-exposed cells. Respiratory rates overall were increased. Also previous hypoxia increased proteins of mitochondrial complexes I and II (Western blotting) in INS-1 cells as well as in rat and human islets. Mitochondrial effects were accompanied by unchanged levels of ATP, increased basal and preserved glucose-induced insulin secretion.

Conclusions

Exposure of INS-1 832/13 cells to hypoxia, followed by a re-oxygenation period increases substrate-stimulated respiratory capacity and coupling efficiency. Such effects are accompanied by up-regulation of mitochondrial complexes also in pancreatic islets, highlighting adaptive capacities of possible importance in an islet transplantation setting. Results also indicate idiosyncrasies of β-cells that do not respire in response to a standard inclusion of malate in SUIT protocols.  相似文献   

5.

Introduction

Acute kidney injury (AKI) is a major risk factor in the development of chronic kidney disease (CKD). However, the mechanisms linking AKI to CKD remain unclear. We examined the alteration of macrophage phenotypes during an extended recovery period following ischemia/reperfusion injury (IRI) and determine their roles in the development of fibrosis.

Methods

The left renal pedicle of mice was clamped for 40 min. To deplete monocyte/macrophage, liposome clodronate was injected or CD11b-DTR and CD11c-DTR transgenic mice were used.

Results

Throughout the phase of IRI recovery, M2-phenotype macrophages made up the predominant macrophage subset. On day 28, renal fibrosis was clearly shown with increased type IV collagen and TGF-β. The depletion of macrophages induced by the liposome clodronate injection improved renal fibrosis with a reduction of kidney IL-6, type IV collagen, and TGF-β levels. Additionally, the adoptive transfer of the M2c macrophages partially reversed the beneficial effect of macrophage depletion, whereas the adoptive transfer of the M1 macrophages did not. M2 macrophages isolated from the kidneys during the recovery phase expressed 2.5 fold higher levels of TGF-β than the M1 macrophages. The injection of the diphtheria toxin into CD11b or CD11c-DTR transgenic mice resulted in lesser depletion or no change in M2 macrophages and had little impact on renal fibrosis.

Conclusion

Although M2 macrophages are known to be indispensible for short-term recovery, they are thought to be main culprit in the development of renal fibrosis following IRI.  相似文献   

6.

Background

New renal biomarkers measured in urine promise to increase specificity for risk stratification and early diagnosis of acute kidney injury (AKI) but concomitantly may be altered by urine concentration effects and chronic renal insufficiency. This study therefore directly compared the performance of AKI biomarkers in urine and plasma.

Methods

This single-center, prospective cohort study included 110 unselected adults undergoing cardiac surgery with cardiopulmonary bypass between 2009 and 2010. Plasma and/or urine concentrations of creatinine, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), liver fatty acid-binding protein (L-FABP), kidney injury molecule 1 (KIM1), and albumin as well as 15 additional biomarkers in plasma and urine were measured during the perioperative period. The primary outcome was AKI defined by AKIN serum creatinine criteria within 72 hours after surgery.

Results

Biomarkers in plasma showed markedly better discriminative performance for preoperative risk stratification and early postoperative (within 24h after surgery) detection of AKI than urine biomarkers. Discriminative power of urine biomarkers improved when concentrations were normalized to urinary creatinine, but urine biomarkers had still lower AUC values than plasma biomarkers. Best diagnostic performance 4h after surgery had plasma NGAL (AUC 0.83), cystatin C (0.76), MIG (0.74), and L-FAPB (0.73). Combinations of multiple biomarkers did not improve their diagnostic power. Preoperative clinical scoring systems (EuroSCORE and Cleveland Clinic Foundation Score) predicted the risk for AKI (AUC 0.76 and 0.71) and were not inferior to biomarkers. Preexisting chronic kidney disease limited the diagnostic performance of both plasma and urine biomarkers.

Conclusions

In our cohort plasma biomarkers had higher discriminative power for risk stratification and early diagnosis of AKI than urine biomarkers. For preoperative risk stratification of AKI clinical models showed similar discriminative performance to biomarkers. The discriminative performance of both plasma and urine biomarkers was reduced by preexisting chronic kidney disease.  相似文献   

7.

Background

Detection of acute kidney injury (AKI) is still a challenge if conventional markers of kidney function are within reference range. We studied the sensitivity and specificity of NGAL as an AKI marker at different degrees of renal ischemia.

Methods

Male C57BL/6J mice were subjected to 10-, 20- or 30-min unilateral renal ischemia, to control operation or no operation, and AKI was evaluated 1 day later by histology, immunohistochemistry, BUN, creatinine, NGAL (plasma and urine) and renal NGAL mRNA expression.

Results

A short (10-min) ischemia did not alter BUN or kidney histology, but elevated plasma and urinary NGAL level and renal NGAL mRNA expression although to a much smaller extent than longer ischemia. Surprisingly, control operation elevated plasma NGAL and renal NGAL mRNA expression to a similar extent as 10-min ischemia. Further, the ratio of urine to plasma NGAL was the best parameter to differentiate a 10-min ischemic injury from control operation, while it was similar in the non and control-operated groups.

Conclusions

These results suggest that urinary NGAL excretion and especially ratio of urine to plasma NGAL are sensitive and specific markers of subclinical acute kidney injury in mice.  相似文献   

8.

Objective

To assess the ability of the urinary biomarkers IGFBP7 (insulin-like growth factor-binding protein 7) and TIMP-2 (tissue inhibitor of metalloproteinase 2) to early predict acute kidney injury (AKI) in high-risk surgical patients.

Introduction

Postoperative AKI is associated with an increase in short and long-term mortality. Using IGFBP7 and TIMP-2 for early detection of cellular kidney injury, thus allowing the early initiation of renal protection measures, may represent a new concept of evaluating renal function.

Methods

In this prospective study, urinary [TIMP-2]×[IGFBP7] was measured in surgical patients at high risk for AKI. A predefined cut-off value of [TIMP-2]×[IGFBP7] >0.3 was used for assessing diagnostic accuracy. Perioperative characteristics were evaluated, and ROC analyses as well as logistic regression models of risk assessment were calculated with and without a [TIMP-2]×[IGFBP7] test.

Results

107 patients were included in the study, of whom 45 (42%) developed AKI. The highest median values of biomarker were detected in septic, transplant and patients after hepatic surgery (1.24 vs 0.45 vs 0.47 ng/l2/1000). The area under receiving operating characteristic curve (AUC) for the risk of any AKI was 0.85, for early use of RRT 0.83 and for 28-day mortality 0.77. In a multivariable model with established perioperative risk factors, the [TIMP-2]×[IGFBP7] test was the strongest predictor of AKI and significantly improved the risk assessment (p<0.001).

Conclusions

Urinary [TIMP-2]×[IGFBP7] test sufficiently detect patients with risk of AKI after major non-cardiac surgery. Due to its rapid responsiveness it extends the time frame for intervention to prevent development of AKI.  相似文献   

9.

Introduction

Dialysis-requiring acute kidney injury is a severe illness associated with poor prognosis. However, information pertaining to incidence rates and prevalence of risk factors remains limited in spite of increasing focus. We evaluate time trends of incidence rates and changing patterns in prevalence of comorbidities, concurrent medication, and other risk factors in nationwide retrospective cohort study.

Materials and Methods

All patients with dialysis-requiring acute kidney injury were identified between January 1st 2000 and December 31st 2012. By cross-referencing data from national administrative registries, the association of changing patterns in dialysis treatment, comorbidity, concurrent medication and demographics with incidence of dialysis-requiring acute kidney injury was evaluated.

Results

A total of 18,561 adult patients with dialysis-requiring AKI were identified between 2000 and 2012. Crude incidence rate of dialysis-requiring AKI increased from 143 per million (95% confidence interval, 137–144) in 2000 to 366 per million (357–375) in 2006, and remained stable hereafter. Notably, incidence of continuous veno-venous hemodialysis (CRRT) and use of acute renal replacement therapy in elderly >75 years increased substantially from 23 per million (20–26) and 328 per million (300–355) in 2000, to 213 per million (206–220) and 1124 per million (1076–1172) in 2012, respectively. Simultaneously, patient characteristics and demographics shifted towards increased age and comorbidity.

Conclusions

Although growth in crude incidence rate of dialysis-requiring AKI stabilized in 2006, continuous growth in use of CRRT, and acute renal replacement therapy of elderly patients >75 years, was observed. Our results indicate an underlying shift in clinical paradigm, as opposed to unadulterated growth in incidence of dialysis-requiring AKI.  相似文献   

10.

Background

Acute kidney injury (AKI) is common after severe paraquat poisoning and usually heralds a fatal outcome. The rapid large increases in serum creatinine (Cr) exceed that which can be explained by creatinine kinetics based on loss of glomerular filtration rate (GFR).

Methods and Findings

This prospective multi-centre study compared the kinetics of two surrogate markers of GFR, serum creatinine and serum cystatin C (CysC), following paraquat poisoning to understand and assess renal functional loss after paraquat poisoning. Sixty-six acute paraquat poisoning patients admitted to medical units of five hospitals were included. Relative changes in creatinine and CysC were monitored in serial blood and urine samples, and influences of non-renal factors were also studied.

Results

Forty-eight of 66 patients developed AKI (AKIN criteria), with 37 (56%) developing moderate to severe AKI (AKIN stage 2 or 3). The 37 patients showed rapid increases in creatinine of >100% within 24 hours, >200% within 48 hours and >300% by 72 hours and 17 of the 37 died. CysC concentration increased by 50% at 24 hours in the same 37 patients and then remained constant. The creatinine/CysC ratio increased 8 fold over 72 hours. There was a modest fall in urinary creatinine and serum/urine creatinine ratios and a moderate increase in urinary paraquat during first three days.

Conclusion

Loss of renal function contributes modestly to the large increases in creatinine following paraquat poisoning. The rapid rise in serum creatinine most probably represents increased production of creatine and creatinine to meet the energy demand following severe oxidative stress. Minor contributions include increased cyclisation of creatine to creatinine because of acidosis and competitive or non-competitive inhibition of creatinine secretion. Creatinine is not a good marker of renal functional loss after paraquat poisoning and renal injury should be evaluated using more specific biomarkers of renal injury.  相似文献   

11.

Background and Objectives

Although acute kidney injury (AKI) is the most frequent complication in patients receiving extracorporeal membrane oxygenation (ECMO), few studies have been conducted on the risk factors of AKI. We performed this study to identify the risk factors of AKI associated with in-hospital mortality.

Methods

Data from 322 adult patients receiving ECMO were analyzed. AKI and its stages were defined according to Kidney Disease Improving Global Outcomes (KDIGO) classifications. Variables within 24 h before ECMO insertion were collected and analyzed for the associations with AKI and in-hospital mortality.

Results

Stage 3 AKI was associated with in-hospital mortality, with a hazard ratio (HR) (95% CI) of 2.690 (1.472–4.915) compared to non-AKI (p = 0.001). The simplified acute physiology score 2 (SAPS2) and serum sodium level were also associated with in-hospital mortality, with HRs of 1.02 (1.004–1.035) per 1 score increase (p = 0.01) and 1.042 (1.014–1.070) per 1 mmol/L increase (p = 0.003). The initial pump speed of ECMO was significantly related to in-hospital mortality with a HR of 1.333 (1.020–1.742) per 1,000 rpm increase (p = 0.04). The pump speed was also associated with AKI (p = 0.02) and stage 3 AKI (p = 0.03) with ORs (95% CI) of 2.018 (1.129–3.609) and 1.576 (1.058–2.348), respectively. We also found that the red cell distribution width (RDW) above 14.1% was significantly related to stage 3 AKI.

Conclusion

The initial pump speed of ECMO was a significant risk factor of in-hospital mortality and AKI in patients receiving ECMO. The RDW was a risk factor of stage 3 AKI.  相似文献   

12.

Introduction

Acute kidney injury (AKI) and acute lung injury (ALI) are serious complications of sepsis. AKI is often viewed as a late complication of sepsis. Notably, the onset of AKI relative to ALI is unclear as routine measures of kidney function (BUN and creatinine) are insensitive and increase late. In this study, we hypothesized that AKI and ALI would occur simultaneously due to a shared pathophysiology (i.e., TNF-α mediated systemic inflammatory response syndrome [SIRS]), but that sensitive markers of kidney function would be required to identify AKI.

Methods

Sepsis was induced in adult male C57B/6 mice with 5 different one time doses of intraperitoneal (IP) endotoxin (LPS) (0.00001, 0.0001, 0.001, 0.01, or 0.25 mg) or cecal ligation and puncture (CLP). SIRS was assessed by serum proinflammatory cytokines (TNF-α, IL-1β, CXCL1, IL-6), ALI was assessed by lung inflammation (lung myeloperoxidase [MPO] activity), and AKI was assessed by serum creatinine, BUN, and glomerular filtration rate (GFR) (by FITC-labeled inulin clearance) at 4 hours. 20 µgs of TNF-α antibody (Ab) or vehicle were injected IP 2 hours before or 2 hours after IP LPS.

Results

Serum cytokines increased with all 5 doses of LPS; AKI and ALI were detected within 4 hours of IP LPS or CLP, using sensitive markers of GFR and lung inflammation, respectively. Notably, creatinine did not increase with any dose; BUN increased with 0.01 and 0.25 mg. Remarkably, GFR was reduced 50% in the 0.001 mg LPS dose, demonstrating that dramatic loss of kidney function can occur in sepsis without a change in BUN or creatinine. Prophylactic TNF-α Ab reduced serum cytokines, lung MPO activity, and BUN; however, post-sepsis administration had no effect.

Conclusions

ALI and AKI occur together early in the course of sepsis and TNF-α plays a role in the early pathogenesis of both.  相似文献   

13.

Purpose

Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated.

Methods

Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy.

Results

Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P < 0.01), 14% increase in ROS production (P < 0.01), and 81% reduction in mitochondrial membrane potential (P < 0.01), compared with untreated cells. Lower concentration of ketamine (100 μM) decreased the ATP level (22%, P < 0.01) and increased the NADH/NAD+ ratio (46%, P < 0.05) without caspase activation. Transmission electron microscopy showed enhanced mitochondrial fission and autophagocytosis at the 100 μM ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation.

Conclusions

We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons.  相似文献   

14.

Background

Traveling to seek specialized care such as liver transplantation (LT) is a reality in the United States. Patient migration has been attributed to organ availability. The aims of this study were to delineate patterns of patient migration and outcomes after LT.

Study Design

All deceased donor LT between 2008–2013 were extracted from UNOS data. Migrated patients were defined as those patients who underwent LT at a center in a different UNOS region from the region in which they resided and traveled a distance > 100 miles.

Results

Migrated patients comprised 8.2% of 28,700 LT performed. Efflux and influx of patients were observed in all 11 UNOS regions. Regions 1, 5, 6, and 9 had a net efflux, while regions 2, 3, 4, 7, 10, and 11 had a net influx of patients. After multivariate adjustment for donor and recipient factors, graft (p = 0.68) and patient survival (p = 0.52) were similar between migrated and non-migrated patients.

Conclusion

A significant number of patients migrated in patterns that could not be explained alone by regional variations in MELD score and wait time. Migration may be a complex interplay of factors including referral patterns, specialized services at centers of excellence and patient preference.  相似文献   

15.

Introduction

The relationship between a perioperative change in sarcopenic status and clinical outcome of liver transplantation (LT) is unknown. We investigated whether post-LT sarcopenia and changes in sarcopenic status were associated with the survival of patients.

Method

This retrospective study was based on a cohort of 145 patients from a single transplant center who during a mean of 1 year after LT underwent computed tomography imaging evaluation. The cross-sectional area of the psoas muscle of LT patients was compared with that of age- and sex-matched healthy individuals. The Cox proportional hazards regression model was used to determine whether post-LT sarcopenia and changes in sarcopenic status affect post-LT survival.

Results

The mean age at LT of the 116 male and 29 female patients was 50.2 ± 7.9 years; the mean follow-up duration was 51.6 ± 32.9 months. All pre-LT patients with sarcopenia still had sarcopenia 1 year after LT; 14 (15%) patients had newly developed sarcopenia. The mean survival duration was 91.8 ± 4.2 months for non-sarcopenic patients and 80.0 ± 5.2 months for sarcopenic patients (log-rank test, p = 0.069). In subgroup analysis, newly developed sarcopenia was an independent negative predictor for post-LT survival (hazard ratio: 10.53, 95% confidence interval: 1.37–80.93, p = 0.024).

Conclusion

Sarcopenia in LT recipients did not improve in any of the previously sarcopenic patients and newly developed within 1 year in others. Newly developed sarcopenia was associated with increased mortality. Newly developed sarcopenia can be used to stratify patients with regard to the risk of post-LT mortality.  相似文献   

16.

Background

Biomarkers are potentially useful in assessment of outcomes in patients with cirrhosis, but information is very limited. Given the large number of biomarkers, adequate choice of which biomarker(s) to investigate first is important.

Aim

Analysis of potential usefulness of a panel of urinary biomarkers in outcome assessment in cirrhosis.

Patients and Methods

Fifty-five patients with acute decompensation of cirrhosis were studied: 39 had Acute Kidney Injury (AKI) (Prerenal 12, type-1 HRS (hepatorenal syndrome) 15 and Acute Tubular Necrosis (ATN) 12) and 16 acute decompensation without AKI. Thirty-four patients had Acute-on-chronic liver failure (ACLF). A panel of 12 urinary biomarkers was assessed, using a multiplex assay, for their relationship with ATN, ACLF and mortality.

Results

Biomarker with best accuracy for ATN diagnosis was NGAL (neutrophil-gelatinase associated lipocalin): 36 [26-125], 104 [58-208] and 1807 [494-3,716] μg/g creatinine in Prerenal-AKI, type-1 HRS and ATN, respectively; p<0.0001 (AUROC 0.957). Other attractive biomarkers for ATN diagnosis were IL-18, albumin, trefoil-factor-3 (TFF-3) and glutathione-S-transferase-π (GST-π) Biomarkers with less accuracy for ATN AUCROC<0.8 were β2-microglobulin, calbindin, cystatin-C, clusterin and KIM-1 (kidney injury molecule-1). For ACLF, the biomarker with the best accuracy was NGAL (ACLF vs. No-ACLF: 165 [67-676] and 32 [19-40] μg/g creatinine; respectively; p<0.0001; AUROC 0.878). Interestingly, other biomarkers with high accuracy for ACLF were osteopontin, albumin, and TFF-3. Biomarkers with best accuracy for prognosis were those associated with ACLF.

Conclusions

A number of biomarkers appear promising for differential diagnosis between ATN and other types of AKI. The most interesting biomarkers for ACLF and prognosis are NGAL, osteopontin, albumin, and TFF-3. These results support the role of major inflammatory reaction in the pathogenesis of ACLF.  相似文献   

17.

Introduction

Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia.

Methods

We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells.

Results

We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy.

Conclusions

These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.  相似文献   

18.

Background & Aims

Portal hyperperfusion after extended hepatectomy or small-for-size liver transplantation may induce organ dysfunction and failure. The underlying mechanisms, however, are still not completely understood. Herein, we analysed whether hepatectomy-associated portal hyperperfusion induces a hepatic arterial buffer response, i.e., an adaptive hepatic arterial constriction, which may cause hepatocellular hypoxia and organ dysfunction.

Methods

Sprague-Dawley rats underwent 30%, 70% and 90% hepatectomy. Baseline measurements before hepatectomy served as controls. Hepatic arterial and portal venous flows were analysed by ultrasonic flow measurement. Microvascular blood flow and mitochondrial redox state were determined by intravital fluorescence microscopy. Hepatic tissue pO2 was analysed by polarographic techniques. Hepatic function and integrity were studied by bromosulfophthalein bile excretion and liver histology.

Results

Portal blood flow was 2- to 4-fold increased after 70% and 90% hepatectomy. This, however, did not provoke a hepatic arterial buffer response. Nonetheless, portal hyperperfusion and constant hepatic arterial blood flow were associated with a reduced mitochondrial redox state and a decreased hepatic tissue pO2 after 70% and 90% hepatectomy. Microvascular blood flow increased significantly after hepatectomy and functional sinusoidal density was found only slightly reduced. Major hepatectomy further induced a 2- to 3-fold increase of bile flow. This was associated with a 2-fold increase of bromosulfophthalein excretion.

Conclusions

Portal hyperperfusion after extended hepatectomy does not induce a hepatic arterial buffer response but reduces mitochondrial redox state and hepatocellular oxygenation. This is not due to a deterioration of microvascular perfusion, but rather due to a relative hypermetabolism of the remnant liver after major resection.  相似文献   

19.

Background

Delayed graft function (DGF) is an early complication of kidney transplantation (KT) associated with increased risk of early loss of graft function. DGF increases using kidneys from extended criteria donors (ECD). NGAL is a 25KDa protein proposed as biomarker of acute kidney injury. The aim of this study was to investigate the role of NGAL as an early and accurate indicator of DGF and Tacrolimus (Tac) toxicity and as a mediator of tissue regeneration in KT from ECD.

Methods

We evaluated plasma levels of NGAL in 50 KT patients from ECD in the first 4 days after surgery or after Tac introduction.

Results

Plasma levels of NGAL at day 1 were significantly higher in DGF group. In the non DGF group, NGAL discriminated between slow or immediate graft function and decreased more rapidly than serum creatinine. NGAL increased after Tac introduction, suggesting a role as marker of drug toxicity. In vitro, hypoxia and Tac induced NGAL release from tubular epithelial cells (TEC) favoring an autocrine loop that sustains proliferation and inhibits apoptosis (decrease of caspases and Bax/Bcl-2 ratio).

Conclusions

NGAL is an early and accurate biomarker of graft function in KT from ECD favoring TEC regeneration after ischemic and nephrotoxic injury.  相似文献   

20.

Objectivs

Cytokine-dependent activation of fibroblasts to myofibroblasts, a key event in fibrosis, is accompanied by phenotypic changes with increased secretory and contractile properties dependent on increased energy utilization, yet changes in the energetic profile of these cells are not fully described. We hypothesize that the TGF-β1-mediated transformation of myofibroblasts is associated with an increase in mitochondrial content and function when compared to naive fibroblasts.

Methods

Cultured NIH/3T3 mouse fibroblasts treated with TGF-β1, a profibrotic cytokine, or vehicle were assessed for transformation to myofibroblasts (appearance of α-smooth muscle actin [α-SMA] stress fibers) and associated changes in mitochondrial content and functions using laser confocal microscopy, Seahorse respirometry, multi-well plate reader and biochemical protocols. Expression of mitochondrial-specific proteins was determined using western blotting, and the mitochondrial DNA quantified using Mitochondrial DNA isolation kit.

Results

Treatment with TGF-β1 (5 ng/mL) induced transformation of naive fibroblasts into myofibroblasts with a threefold increase in the expression of α-SMA (6.85 ± 0.27 RU) compared to cells not treated with TGF-β1 (2.52 ± 0.11 RU). TGF-β1 exposure increased the number of mitochondria in the cells, as monitored by membrane potential sensitive dye tetramethylrhodamine, and expression of mitochondria-specific proteins; voltage-dependent anion channels (0.54 ± 0.05 vs. 0.23 ± 0.05 RU) and adenine nucleotide transporter (0.61 ± 0.11 vs. 0.22 ± 0.05 RU), as well as mitochondrial DNA content (530 ± 12 μg DNA/106 cells vs. 307 ± 9 μg DNA/106 cells in control). TGF-β1 treatment was associated with an increase in mitochondrial function with a twofold increase in baseline oxygen consumption rate (2.25 ± 0.03 vs. 1.13 ± 0.1 nmol O2/min/106 cells) and FCCP-induced mitochondrial respiration (2.87 ± 0.03 vs. 1.46 ± 0.15 nmol O2/min/106 cells).

Conclusions

TGF-β1 induced differentiation of fibroblasts is accompanied by energetic remodeling of myofibroblasts with an increase in mitochondrial respiration and mitochondrial content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号