首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engulfment of the forespore by the mother cell is a universal feature of endosporulation. In Bacillus subtilis, the forespore protein SpoIIQ and the mother cell protein SpoIIIAH form a channel, essential for endosporulation, through which the developing spore is nurtured. The two proteins also form a backup system for engulfment. Unlike in B. subtilis, SpoIIQ of Clostridium difficile has intact LytM zinc‐binding motifs. We show that spoIIQ or spoIIIAH deletion mutants of C. difficile result in anomalous engulfment, and that disruption of the SpoIIQ LytM domain via a single amino acid substitution (H120S) impairs engulfment differently. SpoIIQ and SpoIIQH120S interact with SpoIIIAH throughout engulfment. SpoIIQ, but not SpoIIQH120S, binds Zn2+, and metal absence alters the SpoIIQ‐SpoIIIAH complex in vitro. Possibly, SpoIIQH120S supports normal engulfment in some cells but not a second function of the complex, required following engulfment completion. We show that cells of the spoIIQ or spoIIIAH mutants that complete engulfment are impaired in post‐engulfment, forespore and mother cell‐specific gene expression, suggesting a channel‐like function. Both engulfment and a channel‐like function may be ancestral functions of SpoIIQ‐SpoIIIAH while the requirement for engulfment was alleviated through the emergence of redundant mechanisms in B. subtilis and related organisms.  相似文献   

2.
3.
Bacillus subtilis sporulation depends on the forespore membrane protein SpoIIQ, which interacts with the mother cell protein SpoIIIAH at the septum to localize other sporulation proteins. It has remained unclear how SpoIIQ localizes. We demonstrate that localization of SpoIIQ is achieved by two pathways: SpoIIIAH and the SpoIID, SpoIIM, SpoIIP engulfment proteins. SpoIIQ shows diffuse localization only in a mutant lacking both pathways. Super‐resolution imaging shows that in the absence of SpoIIIAH, SpoIIQ forms fewer, slightly larger foci than in wild type. Surprisingly, photobleaching experiments demonstrate that, although SpoIIQ localizes without SpoIIIAH, it is no longer immobilized, and is therefore able to exchange subunits within a localized pool. SpoIIQ mobility is further increased by the additional absence of the engulfment proteins. However an enzymatically inactive SpoIID protein immobilizes SpoIIQ even in the absence of SpoIIIAH, indicating that complete septal thinning is not required for SpoIIQ localization. This suggests that SpoIIQ interacts with both SpoIIIAH and the engulfment proteins or their peptidoglycan cleavage products. They further demonstrate that apparently normal localization of a protein without a binding partner can mask dramatic alterations in protein mobility. We speculate that SpoIIQ assembles foci along the path defined by engulfment proteins degrading peptidoglycan.  相似文献   

4.
5.
During spore formation in Bacillus subtilis, sigma(E)-directed gene expression in the mother-cell compartment of the sporangium triggers the activation of sigma(G) in the forespore by a pathway of intercellular signalling that is composed of multiple proteins of unknown function. Here, we confirm that the vegetative protein SpoIIIJ, the forespore protein SpoIIQ and eight membrane proteins (SpoIIIAA through SpoIIIAH) produced in the mother cell under the control of sigma(E) are ordinarily required for intercellular signalling. In contrast, an anti-sigma(G) factor previously implicated in the pathway is shown to be dispensable. We also present evidence suggesting that SpoIIIJ is a membrane protein translocase that facilitates the insertion of SpoIIIAE into the membrane. In addition, we report the isolation of a mutation that partially bypasses the requirement for SpoIIIJ and for SpoIIIAA through SpoIIIAG, but not for SpoIIIAH or SpoIIQ, in the activation of sigma(G). We therefore propose that under certain genetic conditions, SpoIIIAH and SpoIIQ can constitute a minimal pathway for the activation of sigma(G). Finally, based on the similarity of SpoIIIAH to a component of type III secretion systems, we speculate that signalling is mediated by a channel that links the mother cell to the forespore.  相似文献   

6.
During sporulation, σG becomes active in the prespore upon the completion of engulfment. We show that the inactivation of the σF-directed csfB locus resulted in premature activation of σG. CsfB exerted control distinct from but overlapping with that exerted by LonA to prevent inappropriate σG activation. The artificial induction of csfB severely compromised spore formation.  相似文献   

7.
Sporulating Bacillus subtilis cells assemble a multimeric membrane complex connecting the mother cell and developing spore that is required to maintain forespore differentiation. An early step in the assembly of this transenvelope complex (called the A–Q complex) is an interaction between the extracellular domains of the forespore membrane protein SpoIIQ and the mother cell membrane protein SpoIIIAH. This interaction provides a platform onto which the remaining components of the complex assemble and also functions as an anchor for cell–cell signalling and morphogenetic proteins involved in spore development. SpoIIQ is required to recruit SpoIIIAH to the sporulation septum on the mother cell side; however, the mechanism by which SpoIIQ specifically localizes to the septal membranes on the forespore side has remained enigmatic. Here, we identify GerM, a lipoprotein previously implicated in spore germination, as the missing factor required for SpoIIQ localization. Our data indicate that GerM and SpoIIIAH, derived from the mother cell, and SpoIIQ, from the forespore, have reciprocal localization dependencies suggesting they constitute a tripartite platform for the assembly of the A–Q complex and a hub for the localization of mother cell and forespore proteins.  相似文献   

8.
Broder DH  Pogliano K 《Cell》2006,126(5):917-928
A key step in bacterial endospore formation is engulfment, during which one bacterial cell engulfs another in a phagocytosis-like process that normally requires SpoIID, SpoIIM, and SpoIIP (DMP). We here describe a second mechanism involving the zipper-like interaction between the forespore protein SpoIIQ and its mother cell ligand SpoIIIAH, which are essential for engulfment when DMP activity is reduced or SpoIIB is absent. They are also required for the rapid engulfment observed during the enzymatic removal of peptidoglycan, a process that does not require DMP. These results suggest the existence of two separate engulfment machineries that compensate for one another in intact cells, thereby rendering engulfment robust. Photobleaching analysis demonstrates that SpoIIQ assembles a stationary structure, suggesting that SpoIIQ and SpoIIIAH function as a ratchet that renders forward membrane movement irreversible. We suggest that ratchet-mediated engulfment minimizes the utilization of chemical energy during this dramatic cellular reorganization, which occurs during starvation.  相似文献   

9.
Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σFG and σEK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue.  相似文献   

10.
11.
Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σF in the forespore, and σE in the mother cell control early stages of development and are replaced, at later stages, by σG and σK, respectively. Starting with σF, the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σE is partially independent of σF, that σG activity is not dependent on σE, and that the activity of σK does not require σG. We also show that σK is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σF-to-σE, σE-to-σG, and σG-to-σK cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.  相似文献   

12.
Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother‐cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother‐cell side, however the mechanism by which SpoIIQ is localized has been unclear. Here, we show that SpoIIQ localization requires its partner protein SpoIIIAH and degradation of the septal peptidoglycan (PG) by the two cell wall hydrolases SpoIID and SpoIIP. Our data suggest that PG degradation enables a second mother‐cell‐produced protein to interact with SpoIIQ. Cells in which both mother‐cell anchoring mechanisms have been disabled have a synergistic sporulation defect suggesting that both localization factors function in the secretion complex. Finally, we show that septal PG degradation is critical for the assembly of an active complex. Altogether, these results suggest that the specialized secretion system that links the mother cell and forespore has a complexity approaching those found in Gram‐negative bacteria and reveal that the sporulating cell must overcome similar challenges in assembling a transenvelope complex.  相似文献   

13.
14.
15.
Many bacterial proteins involved in fundamental processes such as cell shape maintenance, cell cycle regulation, differentiation, division and motility localize dynamically to specific subcellular regions. However, the mechanisms underlying dynamic protein localization are incompletely understood. Using the SpoIIQ protein in Bacillus subtilis as a case study, two reports present important novel insights into how a protein finds its right place at the right time and remains stably bound. During sporulation, SpoIIQ localizes in clusters in the forespore membrane at the interface that separates the forespore and mother cell and functions as a landmark protein for SpoIIIAH in the mother cell membrane. The extracellular domains of SpoIIQ and SpoIIIAH interact directly effectively bridging the gap between the two membranes. Here, SpoIIQ localization is shown to depend on two pathways, one involves SpoIIIAH, the second involves two peptidoglycan‐degrading enzymes SpoIIP and SpoIID; and, SpoIIQ is only delocalized in the absence of all three proteins. Importantly, in the absence of SpoIIIAH, SpoIIQ apparently localizes normally. However, FRAP experiments demonstrated that SpoIIQ is not stably maintained in the clusters in this mutant. Thus, a second targeting pathway can mask significant changes in the localization of a protein.  相似文献   

16.
17.
Clostridioides difficile is a nosocomial pathogen which causes severe diarrhea and colonic inflammation. C. difficile causes disease in susceptible patients when endospores germinate into the toxin-producing vegetative form. The action of these toxins results in diarrhea and the spread of spores into the hospital and healthcare environments. Thus, the destruction of spores is imperative to prevent disease transmission between patients. However, spores are resilient and survive extreme temperatures, chemical exposure, and UV treatment. This makes their elimination from the environment difficult and perpetuates their spread between patients. In the model spore-forming organism, Bacillus subtilis, the small acid-soluble proteins (SASPs) contribute to these resistances. The SASPs are a family of small proteins found in all endospore-forming organisms, C. difficile included. Although these proteins have high sequence similarity between organisms, the role(s) of the proteins differ. Here, we investigated the role of the main α/β SASPs, SspA and SspB, and two annotated putative SASPs, CDR20291_1130 and CDR20291_3080, in protecting C. difficile spores from environmental insults. We found that SspA is necessary for conferring spore UV resistance, SspB minorly contributes, and the annotated putative SASPs do not contribute to UV resistance. In addition, the SASPs minorly contribute to the resistance of nitrous acid. Surprisingly, the combined deletion of sspA and sspB prevented spore formation. Overall, our data indicate that UV resistance of C. difficile spores is dependent on SspA and that SspA and SspB regulate/serve as a checkpoint for spore formation, a previously unreported function of SASPs.  相似文献   

18.
A crucial step in converting an actively growing Bacillus subtilis cell into a dormant spore is the formation of a cell within a cell. This unusual structure is created by a phagocytosis-like process in which the larger mother cell progressively engulfs the adjacent smaller forespore. Only mutations blocking engulfment at an early stage and affecting genes expressed in the mother cell have been identified. Here we describe a new locus, spoIIQ , which is transcribed in the forespore and which encodes a membrane-bound protein required at a late stage of engulfment. Immunofluorescence microscopy analysis have shown that SpoIIQ is initially targeted to the septum at the boundary between the two cells and then spreads around the entire membrane of the forespore. Septum targeting requires only the first 52 residues of SpoIIQ as well as unidentified forespore-specific components. Electron-microscopy studies of cells engineered to activate the mother-cell program of gene expression independently of the forespore indicate that other as yet uncharacterized genes are involved in engulfment and that this morphological process is driven from both sides of the forespore envelope.  相似文献   

19.
To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in 60 of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes.  相似文献   

20.
During the process of spore formation in Bacillus subtilis many membrane proteins localize to the sporulation septum where they play key roles in morphogenesis and cell-cell signalling. However, the mechanism by which these proteins are anchored at this site is not understood. In this report we have defined the localization requirements for the mother-cell membrane protein SpoIVFA, which anchors a signalling complex in the septal membrane on the mother cell side. We have identified five proteins (SpoIID, SpoIIP, SpoIIM, BofA and SpoIIIAH) synthesized in the mother cell under the control of sigma(E) and one protein (SpoIIQ) synthesized in the forespore under the control of sigma(F) that are all required for the proper localization of SpoIVFA. Surprisingly, these proteins appear to have complementary and overlapping anchoring roles suggesting that SpoIVFA is localized in the septal membrane through a web of protein interactions. Furthermore, we demonstrate a direct biochemical interaction between the extracellular domains of two of the proteins required to anchor SpoIVFA: the forespore protein SpoIIQ and the mother-cell protein SpoIIIAH. This result supports the idea that the web of interactions that anchors SpoIVFA is itself held in the septal membrane through a zipper-like interaction across the sporulation septum. Importantly, our results suggest that a second mechanism independent of forespore proteins participates in anchoring SpoIVFA. Finally, we show that the dynamic localization of SpoIIQ in the forespore is impaired in the absence of SpoIVFA but not SpoIIIAH. Thus, a complex web of interactions among mother cell and forespore proteins is responsible for static and dynamic protein localization in both compartments of the sporangium. We envision that this proposed network is involved in anchoring other sporulation proteins in the septum and that protein networks with overlapping anchoring capacity is a feature of protein localization in all bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号