首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axon’s cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.  相似文献   

2.
The developing optic pathway has proven one of the most informative model systems for studying mechanisms of axon guidance. The first step in this process is the directed extension of retinal ganglion cell (RGC) axons within the optic fibre layer (OFL) of the retina towards their exit point from the eye, the optic disc. Previously, we have shown that the inhibitory guidance molecules, Slit1 and Slit2, regulate two distinct aspects of intraretinal axon guidance in a region-specific manner. Using knockout mice, we have found that both of these guidance activities are mediated via Robo2. Of the four vertebrate Robos, only Robo1 and Robo2 are expressed by RGCs. In mice lacking robo1 intraretinal axon guidance occurs normally. However, in mice lacking robo2 RGC axons make qualitatively and quantitatively identical intraretinal pathfinding errors to those reported previously in Slit mutants. This demonstrates clearly that, as in other regions of the optic pathway, Robo2 is the major receptor required for intraretinal axon guidance. Furthermore, the results suggest strongly that redundancy with other guidance signals rather than different receptor utilisation is the most likely explanation for the regional specificity of Slit function during intraretinal axon pathfinding.  相似文献   

3.
Longitudinal axons grow long distances along precise pathways to connect major CNS regions. However, during embryonic development, it remains largely undefined how the first longitudinal axons choose specific positions and grow along them. Here, we review recent evidence identifying a critical role for Slit/Robo signals to guide pioneer longitudinal axons in the embryonic brain stem. These studies indicate that Slit/Robo signals from the floor plate have dual functions: to repel longitudinal axons away from the ventral midline, and also to maintain straight longitudinal growth. These dual functions likely cooperate with other guidance cues to establish the major longitudinal tracts in the brain.Key words: Slit, Robo, longitudinal axon, hindbrain, axon guidance  相似文献   

4.
The basal lamina (BM) contains numerous components with a predominance of type IV collagens. Clinical manifestations associated with mutations of the human COL4A1 gene include perinatal cerebral hemorrhage and porencephaly, hereditary angiopathy, nephropathy, aneurysms and muscle cramps (HANAC), ocular dysgenesis, myopathy, Walker–Warburg syndrome and systemic tissue degeneration. In Drosophila, the phenotype associated with dominant temperature sensitive mutations of col4a1 include severe myopathy resulting from massive degradation of striated muscle fibers, and in the gut, degeneration of circular visceral muscle cells and epithelial cells following detachment from the BM. In order to determine the consequences of altered BM functions due to aberrant COL4A1 protein, we have carried out a series of tests using Drosophila DTS-L3 mutants from our allelic series of col4a1 mutations with confirmed degeneration of various cell types and lowest survival rate among the col4a1 mutant lines at restrictive temperature. Results demonstrated epithelial cell degeneration in the gut, shortened gut, enlarged midgut with multiple diverticulae, intestinal dysfunction and shortened life span. Midgut immunohistochemistry analyses confirmed altered expression and distribution of BM components integrin PSI and PSII alpha subunits, laminin gamma 1, and COL4A1 both in larvae and adults. Global gene expression analysis revealed activation of the effector AMP genes of the primary innate immune system including Metchnikowin, Diptericin, Diptericin B, and edin that preceded morphological changes. Attacin::GFP midgut expression pattern further supported these changes. An increase in ROS production and changes in gut bacterial flora were also noted and may have further enhanced an immune response. The phenotypic features of Drosophila col4a1 mutants confirmed an essential role for type IV collagen in maintaining epithelial integrity, gut morphology and intestinal function and suggest that aberrant structure and function of the COL4A1 protein may also be a significant factor in modulating immunity.  相似文献   

5.
The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit proteins are expressed by the tissues that delimit motor axon trajectories, i.e. the floor plate and the rhombic lip. We present in vitro evidence showing that Slit1 and Slit2 proteins are selective inhibitors and repellents for dorsally projecting, but not for ventrally projecting, cranial motor axons. Analysis of mice deficient in Slit and Robo function shows that cranial motor axons aberrantly enter the midline, while ectopic expression of Slit1 in chick embryos leads to specific motor axon projection errors. Expression of dominant-negative Robo receptors within cranial motoneurons in chick embryos strikingly perturbs their projections, causing some motor axons to enter the midline, and preventing dorsally projecting motor axons from exiting the hindbrain. These data suggest that Slit proteins play a key role in guiding dorsally projecting cranial motoneurons and in facilitating their neural tube exit.  相似文献   

6.
Xiao T  Staub W  Robles E  Gosse NJ  Cole GJ  Baier H 《Cell》2011,146(1):164-176
The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons. We show that the laminar specificity of retinotectal connections does not depend on self-sorting interactions among RGC axons. Rather, tectum-derived Slit1, signaling through axonal Robo2, guides neurites to their target layer. Genetic and biochemical studies indicate that Slit binds to Dragnet (Col4a5), a type IV Collagen, which forms the basement membrane on the surface of the tectum. We further show that radial glial endfeet are required for the basement-membrane anchoring of Slit. We propose that Slit1 signaling, perhaps in the form of a superficial-to-deep gradient, presents laminar positional cues to ingrowing retinal axons.  相似文献   

7.
8.
Jeong SJ  Li S  Luo R  Strokes N  Piao X 《PloS one》2012,7(1):e29767
It has recently been discovered that Collagen III, the encoded protein of the type IV Ehlers-Danlos Syndrome (EDS) gene, is one of the major constituents of the pial basement membrane (BM) and serves as the ligand for GPR56. Mutations in GPR56 cause a severe human brain malformation called bilateral frontoparietal polymicrogyria, in which neurons transmigrate through the BM causing severe mental retardation and frequent seizures. To further characterize the brain phenotype of Col3a1 knockout mice, we performed a detailed histological analysis. We observed a cobblestone-like cortical malformation, with BM breakdown and marginal zone heterotopias in Col3a1 −/− mouse brains. Surprisingly, the pial BM appeared intact at early stages of development but starting as early as embryonic day (E) 11.5, prominent BM defects were observed and accompanied by neuronal overmigration. Although collagen III is expressed in meningeal fibroblasts (MFs), Col3a1 −/− MFs present no obvious defects. Furthermore, the expression and posttranslational modification of α-dystroglycan was undisturbed in Col3a1 −/− mice. Based on the previous finding that mutations in COL3A1 cause type IV EDS, our study indicates a possible common pathological pathway linking connective tissue diseases and brain malformations.  相似文献   

9.
The rhombic lip, a dorsal stripe of the neuroepithelium lining the edge of the fourth ventricle, is the site of origin of precerebellar neurons (PCN), which migrate tangentially towards the floor plate. After reaching the floor plate, they project their axons to the cerebellum. Although previous studies have shown that the guidance molecules Netrin/DCC and Slit/Robo have critical roles in PCN migration, the molecular mechanisms underlying this process remain poorly understood. Here, we report that draxin, a repulsive axon guidance protein, is involved in PCN development. We found that draxin is expressed in the rhombic lip and migratory stream of some PCN in the developing hindbrain of mice. In addition, draxin inhibited neurite outgrowth and nuclei migration from rhombic lip explants. These results suggest that draxin functions as a repulsive guidance cue for PCN migration. However, we observed no significant differences in PCN distribution between draxin−/− and wild type embryos. Thus, draxin and other axon guidance cues may have redundant roles in PCN migration.  相似文献   

10.
The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.  相似文献   

11.
Bin Du 《FEBS letters》2010,584(4):811-816
Deposition of collagen IV in proximal tubule cells (PTCs) plays an important role during diabetic nephropathy, but the mechanism underlying excessive production of collagen IV remains poorly understood. In this study, we examined the miRNA profile of HK-2 cells and found that high glucose/TGF-β1 induced significant down-regulation of miR-29a. We then showed that miR-29a negatively regulated collagen IV by directly targeting the 3′UTRs of col4a1 and col4a2. These results suggest that miR-29a acts as a repressor to fine-tune collagen expression and that the reduction of miR-29a caused by high glucose may increase the risk of excess collagen deposition in PTCs.  相似文献   

12.
Axon guidance molecule Slit is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the function of Slit in the silkworm Bombyx mori was unknown. Here we showed that the structure of Bombyx mori Slit (BmSlit) was different from that in most other species in its C-terminal sequence. BmSlit was localized in the midline glial cell, the neuropil, the tendon cell, the muscle and the silk gland and colocalized with BmRobo1 in the neuropil, the muscle and the silk gland. Knock-down of Bmslit by RNA interference (RNAi) resulted in abnormal development of axons and muscles. Our results suggest that BmSlit has a repulsive role in axon guidance and muscle migration. Moreover, the localization of BmSlit in the silk gland argues for its important function in the development of the silk gland.  相似文献   

13.
The presentation of secreted axon guidance factors plays a major role in shaping central nervous system (CNS) connectivity. Recent work suggests that heparan sulfate (HS) regulates guidance factor activity; however, the in vivo axon guidance roles of its carrier proteins (heparan sulfate proteoglycans, or HSPGs) are largely unknown. Here we demonstrate through genetic analysis in vivo that the HSPG Syndecan (Sdc) is critical for the fidelity of Slit repellent signaling at the midline of the Drosophila CNS, consistent with the localization of Sdc to CNS axons. sdc mutants exhibit consistent defects in midline axon guidance, plus potent and specific genetic interactions supporting a model in which HSPGs improve the efficiency of Slit localization and/or signaling. To test this hypothesis, we show that Slit distribution is altered in sdc mutants and that Slit and its receptor bind to Sdc. However, when we compare the function of the transmembrane Sdc to a different class of HSPG that localizes to CNS axons (Dallylike), we find functional redundancy, suggesting that these proteoglycans act as spatially specific carriers of common HS structures that enable growth cones to interact with and perceive Slit as it diffuses away from its source at the CNS midline.  相似文献   

14.
Summary Antibodies against laminin (LN), fibronectin (FN), collagen type IV (Col IV), neural cell adhesion molecule (N-CAM), T-61 antigen, actin, tubulin and neurofilament protein were injected into the eyes of quail embryos (Coturnix coturnix japonica) of different ages. Twenty h after injection, the heads of the embryos were fixed and the antibodies visualized in sections with the use of fluorescein-isothiocyanate (FITC) or peroxidase-labeled second antibodies by light- and electron microscopy. Antibodies against cell surface molecules, such as N-CAM, LN, Col IV and T 61, labeled matrix and membrane components of the retinal cells in different antigen-specific patterns. Antibodies against intracellular antigens, such as actin, tubulin and neurofilament protein labeled nonspecifically the vitreous body and the inner basal lamina of the retina, but resulted in only a very weak and diffuse labeling of retinal cells. N-CAM was detected in high concentration in the optic fiber layer on the surface of axons and on the membranes of all retinal cells. Col IV, LN and T 61 antigen were found predominantly in the optic fiber layer. LN and Col IV were located on the surface of axons and the endfeet of ventricular (neuroepithelial) cells in a patchy distribution. The T-61 antigen was found in early stages in the cell-free space of the optic fiber layer, on the surface of ventricular cells and axons, and at later stages also in high-density patches between nerve fibers. The distribution of LN and T-61 antigen together with data from in vitro experiments suggests a crucial role of these proteins in axon extension in the avian retina during early development of the optic fiber layer.  相似文献   

15.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

16.
Overexpression of SPARC, a collagen-binding glycoprotein, is strongly associated with tumor invasion through extracellular matrix in many aggressive cancers. SPARC regulates numerous cellular processes including integrin-mediated cell adhesion, cell signaling pathways, and extracellular matrix assembly; however, the mechanism by which SPARC promotes cell invasion in vivo remains unclear. A main obstacle in understanding SPARC function has been the difficulty of visualizing and experimentally examining the dynamic interactions between invasive cells, extracellular matrix and SPARC in native tissue environments. Using the model of anchor cell invasion through the basement membrane (BM) extracellular matrix in Caenorhabditis elegans, we find that SPARC overexpression is highly pro-invasive and rescues BM transmigration in mutants with defects in diverse aspects of invasion, including cell polarity, invadopodia formation, and matrix metalloproteinase expression. By examining BM assembly, we find that overexpression of SPARC specifically decreases levels of BM type IV collagen, a crucial structural BM component. Reduction of type IV collagen mimicked SPARC overexpression and was sufficient to promote invasion. Tissue-specific overexpression and photobleaching experiments revealed that SPARC acts extracellularly to inhibit collagen incorporation into BM. By reducing endogenous SPARC, we also found that SPARC functions normally to traffic collagen from its site of synthesis to tissues that do not express collagen. We propose that a surplus of SPARC disrupts extracellular collagen trafficking and reduces BM collagen incorporation, thus weakening the BM barrier and dramatically enhancing its ability to be breached by invasive cells.  相似文献   

17.
18.
Molecular insights into the selective vulnerability of retinal ganglion cells (RGCs) in optic neuropathies and after ocular trauma can lead to the development of novel therapeutic strategies aimed at preserving RGCs. However, little is known about what molecular contexts determine RGC susceptibility. In this study, we show the molecular mechanisms underlying the regional differential vulnerability of RGCs after optic nerve injury. We identified RGCs in the mouse peripheral ventrotemporal (VT) retina as the earliest population of RGCs susceptible to optic nerve injury. Mechanistically, the serotonin transporter (SERT) is upregulated on VT axons after injury. Utilizing SERT-deficient mice, loss of SERT attenuated VT RGC death and led to robust retinal axon regeneration. Integrin β3, a factor mediating SERT-induced functions in other systems, is also upregulated in RGCs and axons after injury, and loss of integrin β3 led to VT RGC protection and axon regeneration. Finally, RNA sequencing analyses revealed that loss of SERT significantly altered molecular signatures in the VT retina after optic nerve injury, including expression of the transmembrane protein, Gpnmb. GPNMB is rapidly downregulated in wild-type, but not SERT- or integrin β3-deficient VT RGCs after injury, and maintaining expression of GPNMB in RGCs via AAV2 viruses even after injury promoted VT RGC survival and axon regeneration. Taken together, our findings demonstrate that the SERT-integrin β3-GPNMB molecular axis mediates selective RGC vulnerability and axon regeneration after optic nerve injury.  相似文献   

19.
Here, we use a mouse model (DBA/2J) to readdress the location of insult(s) to retinal ganglion cells (RGCs) in glaucoma. We localize an early sign of axon damage to an astrocyte-rich region of the optic nerve just posterior to the retina, analogous to the lamina cribrosa. In this region, a network of astrocytes associates intimately with RGC axons. Using BAX-deficient DBA/2J mice, which retain all of their RGCs, we provide experimental evidence for an insult within or very close to the lamina in the optic nerve. We show that proximal axon segments attached to their cell bodies survive to the proximity of the lamina. In contrast, axon segments in the lamina and behind the eye degenerate. Finally, the Wlds allele, which is known to protect against insults to axons, strongly protects against DBA/2J glaucoma and preserves RGC activity as measured by pattern electroretinography. These experiments provide strong evidence for a local insult to axons in the optic nerve.  相似文献   

20.
The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining three branchiomeric nerves. For these nerves, the motor efferents form prior to the sensory afferents, and their pathfinding show no dependence on sensory axons, as ablation of cranial sensory neurons by ngn1 knockdown had no effect. In contrast, the sensory limbs of the IXth and Xth nerves (but not the Vth or VIIth) were misrouted in gli1 mutants, which lack hindbrain bmn, suggesting that the motor efferents are crucial for appropriate sensory axon projection in some branchiomeric nerves. For all four nerves, peripheral glia were the intermediate component added and had a critical role in nerve integrity but not in axon guidance, as foxd3 null mutants lacking peripheral glia exhibited defasciculation of gVII, gIX, and gX axons. The bmn efferents were unaffected in these mutants. These data demonstrate that multiple mechanisms underlie formation of the four branchiomeric nerves. For the Vth, sensory axons initiate nerve formation, for the VIIth the sensory and motor limbs are independent, and for the IXth/Xth the motor axons initiate formation. In all cases the glia are patterned by the initiating set of axons and are needed to maintain axon fasciculation. These results reveal that coordinated interactions between the three neural cell types in branchiomeric nerves differ according to their axial position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号