首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Erythropoiesis involves a dynamic process that begins with committed erythroid burst forming units (BFU-Es) followed by rapidly dividing erythroid colony forming units (CFU-Es). After CFU-Es, cells are morphologically recognizable and generally termed terminal erythroblasts. One of the challenges for the study of terminal erythropoiesis is the lack of experimental approaches to dissect gene functions in a chronological manner. In this protocol, we describe a unique strategy to determine gene functions in the early and late stages of terminal erythropoiesis. In this system, mouse fetal liver TER119 (mature erythroid cell marker) negative erythroblasts were purified and transduced with exogenous expression of cDNAs or small hairpin RNAs (shRNAs) for the genes of interest. The cells were subsequently cultured in medium containing growth factors other than erythropoietin (Epo) to maintain their progenitor stage for 12 hr while allowing the exogenous cDNAs or shRNAs to express. The cells were changed to Epo medium after 12 hr to induce cell differentiation and proliferation while the exogenous genetic materials were already expressed. This protocol facilitates analysis of gene functions in the early stage of terminal erythropoiesis. To study late stage terminal erythropoiesis, cells were immediately cultured in Epo medium after transduction. In this way, the cells were already differentiated to the late stage of terminal erythropoiesis when the transduced genetic materials were expressed. We recommend a general application of this strategy that would help understand detailed gene functions in different stages of terminal erythropoiesis.  相似文献   

4.
5.
6.
7.
8.
The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus–host protein–pro-tein interaction networks can reveal cellular pathways critical to viral replication and disease patho-genesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as crit-ical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for fur-ther studies of flavivirus–host interactions, disease pathogenesis, and new drug targets.  相似文献   

9.
10.
Activation of the PI3K/AKT signal pathway is a known driving force for the progression to castration-recurrent prostate cancer (CR-CaP), which constitutes the major lethal phenotype of CaP. Here, we identify using a genomic shRNA screen the PI3K/AKT-inactivating downstream target, FOXO4, as a potential CaP metastasis suppressor. FOXO4 protein levels inversely correlate with the invasive potential of a panel of human CaP cell lines, with decreased mRNA levels correlating with increased incidence of clinical metastasis. Knockdown (KD) of FOXO4 in human LNCaP cells causes increased invasion in vitro and lymph node (LN) metastasis in vivo without affecting indices of proliferation or apoptosis. Increased Matrigel invasiveness was found by KD of FOXO1 but not FOXO3. Comparison of differentially expressed genes affected by FOXO4-KD in LNCaP cells in culture, in primary tumors and in LN metastases identified a panel of upregulated genes, including PIP, CAMK2N1, PLA2G16 and PGC, which, if knocked down by siRNA, could decrease the increased invasiveness associated with FOXO4 deficiency. Although only some of these genes encode FOXO promoter binding sites, they are all RUNX2-inducible, and RUNX2 binding to the PIP promoter is increased in FOXO4-KD cells. Indeed, the forced expression of FOXO4 reversed the increased invasiveness of LNCaP/shFOXO4 cells; the forced expression of FOXO4 did not alter RUNX2 protein levels, yet it decreased RUNX2 binding to the PIP promoter, resulting in PIP downregulation. Finally, there was a correlation between FOXO4, but not FOXO1 or FOXO3, downregulation and decreased metastasis-free survival in human CaP patients. Our data strongly suggest that increased PI3K/AKT-mediated metastatic invasiveness in CaP is associated with FOXO4 loss, and that mechanisms to induce FOXO4 re-expression might suppress CaP metastatic aggressiveness.  相似文献   

11.
《Journal of molecular biology》2019,431(17):3056-3067
PRL-3 belongs to the PRL phosphatase family. Its physiological role remains unclear, but many studies have identified that PRL-3 is a marker of cancer progression and shown it to be associated with metastasis. Evidence implicating PRL-3 in various elements of the metastatic process, such as the cell cycle, survival, angiogenesis, adhesion, cytoskeleton remodeling, EMT, motility and invasion, has been reported. Furthermore, several molecules acting as direct or indirect substrates have been identified. However, this information was obtained in many different studies, and it remains difficult to see the larger picture. We therefore systematically collected the published information together and used it to develop a comprehensive signaling network map. By analyzing this network map, we were able to retrieve the signaling pathways via which PRL-3 governs the key steps of the metastatic process in cancer. In this review, we summarize current knowledge of the role of PRL-3 in cancer and the molecular mechanisms involved. We also provide the web-based open-source PRL-3 signaling network map, for use in further studies.  相似文献   

12.
Key circulating molecules that link vitamin D (VD) to pediatric obesity and its co-morbidities remain unclear. Using a proteomic approach, our objective was to identify key molecules in obese children dichotomized according to 25OH-vitamin D (25OHD) levels. A total of 42 obese children (M/F = 18/24) were divided according to their 25OHD3 levels into 25OHD3 deficient (VDD; n = 18; 25OHD<15 ng/ml) or normal subjects (NVD; n = 24; >30 ng/ml). Plasma proteomic analyses by two dimensional (2D)-electrophoresis were performed at baseline in all subjects. VDD subjects underwent a 12mo treatment with 3000 IU vitamin D3 once a week to confirm the proteomic analyses. The proteomic analyses identified 53 “spots” that differed between VDD and NVD (p<0.05), amongst which adiponectin was identified. Adiponectin was selected for confirmational studies due to its tight association with obesity and diabetes mellitus. Western Immunoblot (WIB) analyses of 2D-gels demonstrated a downregulation of adiponectin in VDD subjects, which was confirmed in the plasma from VDD with respect to NVD subjects (p<0.035) and increased following 12mo vitamin D3 supplementation in VDD subjects (p<0.02). High molecular weight (HMW) adiponectin, a surrogate indicator of insulin sensitivity, was significantly lower in VDD subjects (p<0.02) and improved with vitamin D3 supplementation (p<0.042). A direct effect in vitro of 1α,25-(OH)2D3 on adipocyte adiponectin synthesis was demonstrated, with adiponectin and its multimeric forms upregulated, even at low pharmacological doses (10−9 M) of 1α,25-(OH)2D3. This upregulation was paralleled by the adiponectin interactive protein, DsbA-L, suggesting that the VD regulation of adiponectin involves post-transciptional events. Using a proteomic approach, multimeric adiponectin has been identified as a key plasma protein that links VDD to pediatric obesity.  相似文献   

13.
14.
15.
Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n = 228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will facilitate the identification of novel germline factors driving aggressive disease susceptibility and allow for new insights into these deadly forms of prostate cancer.  相似文献   

16.
Special numerical index for comparison of survival functions is proposed. The index is called by directed probabilistic semimetric. The examples of these semimetrics are presented. The procedure of the index estimating on sampled data is considered.  相似文献   

17.
18.
19.
Degradation of marine organic matter under anoxic conditions involves microbial communities working in concert to remineralize complex substrates to CO 2 . In order to investigate the coupling between the initial and terminal steps of this sequence in permanently cold sediments, rates of extracellular enzymatic hydrolysis and sulfate reduction were measured in parallel cores collected from 5 fjords on the west and northwest coast of Svalbard, in the high Arctic. Inventories of total dissolved carbohydrates were also measured in order to evaluate their potential role in carbon turnover. Polysaccharide hydrolysis rates exhibited substrate-related and, to a lesser extent, depth-related differences (p < 0.0001); laminarin hydrolysis was consistently most rapid at nearly all depths and sites, and fucoidan hydrolysis was least rapid. Although there was a high degree of variability in parallel cores, sulfate reduction rates also exhibited statistically significant depth-and station-related differences. A comparison with data from previous investigations in Svalbard sediments suggests that this variability is linked to substrate availability rather than to organism distribution. Total dissolved carbohydrate concentrations were comparable to those measured in more temperate sediments, and likely comprise a considerable fraction of porewater dissolved organic carbon. A comparison of dissolved carbohydrate inventories with hydrolysis and sulfate reduction rates suggests that the turnover of carbon through the dissolved pool occurs quite rapidly, on the order of a few days to weeks. The transformation of particulate to dissolved organic matter must also be sufficiently rapid to maintain the measured rates of terminal remineralization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号