首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization signal (NLS) and an overlapping PIP2-binding motif (PBM) involved in plasma membrane targeting. We report a comprehensive mutational and functional analysis of the PTEN N-terminus, including a panel of tumor-related mutations at this region. Nuclear/cytoplasmic partitioning in mammalian cells and PIP3 phosphatase assays in reconstituted S. cerevisiae defined categories of PTEN N-terminal mutations with distinct PIP3 phosphatase and nuclear accumulation properties. Noticeably, most tumor-related mutations that lost PIP3 phosphatase activity also displayed impaired nuclear localization. Cell proliferation and soft-agar colony formation analysis in mammalian cells of mutations with distinctive nuclear accumulation and catalytic activity patterns suggested a contribution of both properties to PTEN tumor suppressor activity. Our functional dissection of the PTEN N-terminus provides the basis for a systematic analysis of tumor-related and experimentally engineered PTEN mutations.  相似文献   

2.
PTEN is a frequently mutated tumor suppressor gene that opposes the PI3K/AKT pathway through dephosphorylation of phosphoinositide-3,4,5-triphosphate. Recently, nuclear compartmentalization of PTEN was found as a key component of its tumor-suppressive activity; however its nuclear function remains poorly defined. Here we show that nuclear PTEN interacts with APC/C, promotes APC/C association with CDH1, and thereby enhances the tumor-suppressive activity of the APC-CDH1 complex. We find that nuclear exclusion but not phosphatase inactivation of PTEN impairs APC-CDH1. This nuclear function of PTEN provides a straightforward mechanistic explanation for the fail-safe cellular senescence response elicited by acute PTEN loss and the tumor-suppressive activity of catalytically inactive PTEN. Importantly, we demonstrate that PTEN mutant and PTEN null states are not synonymous as they are differentially sensitive to pharmacological inhibition of APC-CDH1 targets such as PLK1 and Aurora kinases. This finding identifies a strategy for cancer patient stratification and, thus, optimization of targeted therapies. PAPERCLIP:  相似文献   

3.
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the t(9;22) translocation coding for the chimeric protein p210 BCR-ABL. The tumor suppressor PTEN plays a critical role in the pathogenesis of CML chronic phase, through non genomic loss of function mechanisms, such as protein down-regulation and impaired nuclear/cytoplasmic shuttling. Here we demonstrate that BCR-ABL promotes PTEN downregulation through a MEK dependent pathway. Furthermore, we describe a novel not recurrent N212D-PTEN point mutation found in the EM2 blast crisis cell line.  相似文献   

4.
The tumor suppressor PTEN is a phosphatase with sequence homology to tensin. PTEN dephosphorylates phosphatidylinositol 3,4, 5-trisphosphate (PIP3) and focal adhesion kinase (FAK), and it can inhibit cell growth, invasion, migration, and focal adhesions. We investigated molecular interactions of PTEN and FAK in glioblastoma and breast cancer cells lacking PTEN. The PTEN trapping mutant D92A bound wild-type FAK, requiring FAK autophosphorylation site Tyr397. In PTEN-mutated cancer cells, FAK phosphorylation was retained even in suspension after detachment from extracellular matrix, accompanied by enhanced PI 3-K association with FAK and sustained PI 3-K activity, PIP3 levels, and Akt phosphorylation; expression of exogenous PTEN suppressed all five properties. PTEN-mutated cells were resistant to apoptosis in suspension, but most of the cells entered apoptosis after expression of exogenous PTEN or wortmannin treatment. Moreover, overexpression of FAK in PTEN-transfected cells reversed the decreased FAK phosphorylation and PI 3-K activity, and it partially rescued PIP3 levels, Akt phosphorylation, and PTEN-induced apoptosis. Our results show that FAK Tyr397 is important in PTEN interactions with FAK, that PTEN regulates FAK phosphorylation and molecular associations after detachment from matrix, and that PTEN negatively regulates the extracellular matrix-dependent PI 3-K/Akt cell survival pathway in a process that can include FAK.  相似文献   

5.
The PML tumor suppressor controls growth suppression, induction of apoptosis, and cellular senescence. PML loss occurs frequently in hematopoietic and solid tumors. PML loss often correlates with tumor progression. Casein kinase 2 (CK2) is a stress-activated serine/threonine protein kinase that is oncogenic and frequently overexpressed in human tumor of multiple histological origins. In addition, CK2 overexpression due to gene amplification has been reported to be an adverse prognostic factor in non-small cell lung cancer. At the 5th International Conference on Protein Kinase CK2 in Padova, Italy, we reviewed our recent findings that PML undergoes ubiquitin/proteasome-mediated degradation in immortalized and tumor derived cell lines. PML degradation depends on direct CK2 phosphorylation of PML Ser517. PML mutants that are resistant to CK2 phosphorylation display increased tumor suppressive functions in assays measuring apoptosis, replicative senescence, and in xenograft models. More significantly, CK2 pharmacological inhibition enhances PML tumor suppressive property. These data identify a key post-translational mechanism that controls PML protein levels in cancer cells and suggest that CK2 inhibitors may be beneficial anti-cancer drugs.  相似文献   

6.
The tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulates diverse cellular functions by dephosphorylating the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). Recent study revealed that PICT-1/GLTSCR2 bound to and stabilized PTEN protein in cells, implicating its roles in PTEN-governed PIP(3) signals. In this study, we demonstrate that RNA interference-mediated knockdown of PICT-1 in HeLa cells down-regulated endogenous PTEN and resulted in the activation of PIP(3) downstream effectors, such as protein kinase B/Akt. Furthermore, the PICT-1 knockdown promoted HeLa cell proliferation; however the proliferation of PTEN-null cells was not altered by the PICT-1 knockdown, suggesting its dependency on PTEN status. In addition, apoptosis of HeLa cells induced by staurosporine or serum-depletion was alleviated by the PICT-1 knockdown in the similar PTEN-dependent manner. Most strikingly, the PICT-1 knockdown in HeLa and NIH3T3 cells promoted anchorage-independent growth, a hallmark of tumorigenic transformation. Furthermore, PICT-1 was aberrantly expressed in 18 (41%) of 44 human neuroblastoma specimens, and the PICT-1 loss was associated with reduced PTEN protein expression in spite of the existence of PTEN mRNA. Collectively, these results suggest that PICT-1 plays a role in PIP(3) signals through controlling PTEN protein stability and the impairment in the PICT-1-PTEN regulatory unit may become a causative factor in human tumor(s).  相似文献   

7.
8.
Defects in the PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor gene have been found in many human cancers including breast and prostate. Here we show that PTEN suppresses androgen receptor (AR) activity via a phosphatidylinositol-3-OH kinase/Akt-independent pathway in the early passage numbers prostate cancer LNCaP cells. We provide the direct links between PTEN and androgen/AR signaling by demonstrating that AR directly interacts with PTEN. The interaction between PTEN and AR inhibits the AR nuclear translocation and promotes the AR protein degradation that result in the suppression of AR transactivation and induction of apoptosis. The minimum interaction peptide within AR (amino acids 483-651) disrupts the interaction of PTEN with AR and reduces the PTEN effect on AR transactivation and apoptosis. Genetic approaches using PTEN-null mouse embryonic fibroblasts (MEFs) further demonstrate that both AR expression and AR activity were much higher in PTEN-null MEFs than wild-type MEFs, and reintroducing PTEN into PTEN-null MEFs dramatically reduced AR protein levels and AR activity. Interestingly, we also found that PTEN could suppress AR activity via the phosphatidylinositol-3-OH kinase/Akt-dependent pathway in the higher passage number LNCaP cells, because restoration of Akt activity blocks the effect of PTEN on AR activity. Together, these contrasting PTEN effects on AR activity in the same prostate cancer cell line with different passage numbers suggest that PTEN, via distinct mechanisms, differentially regulates AR in various stages of prostate cancers.  相似文献   

9.
Tumor necrosis factor superfamily member TRAIL/Apo-2L has recently been shown to induce apoptosis in transformed and cancer cells. Some prostate cancer cells express constitutively active Akt/protein kinase B due to a complete loss of lipid phosphatase PTEN gene, a negative regulator of phosphatidylinositol 3-kinase pathway. Constitutively active Akt promotes cellular survival and resistance to chemotherapy and radiation. We have recently noticed that some human prostate cancer cells are resistant to TRAIL. We therefore examined the intracellular mechanisms of cellular resistance to TRAIL. The cell lines expressing the highest level of constitutively active Akt were more resistant to undergo apoptosis by TRAIL than those expressing the lowest level. Down-regulation of constitutively active Akt by phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002, reversed cellular resistance to TRAIL. Treatment of resistant cells with cycloheximide (a protein synthesis inhibitor) rendered cells sensitive to TRAIL. Transfecting dominant negative Akt decreased Akt activity and increased TRAIL-induced apoptosis in cells with high Akt activity. Conversely, transfecting constitutively active Akt into cells with low Akt activity increased Akt activity and attenuated TRAIL-induced apoptosis. Inhibition of TRAIL sensitivity occurs at the level of BID cleavage, as caspase-8 activity was not affected. Enforced expression of anti-apoptotic protein Bcl-2 or Bcl-X(L) inhibited TRAIL-induced mitochondrial dysfunction and apoptosis. We therefore identify Akt as a constitutively active kinase that promotes survival of prostate cancer cells and demonstrate that modulation of Akt activity, by pharmacological or genetic approaches, alters the cellular responsiveness to TRAIL. Thus, TRAIL in combination with agents that down-regulate Akt activity can be used to treat prostate cancer.  相似文献   

10.
Glioma tumor suppressor candidate region gene 2 (GLTSCR2/PICT-1) is localized within the well-known 1.4-Mb tumor suppressive region of chromosome 19q, which is frequently altered in various human tumors, including diffuse gliomas. Aside from its localization on the chromosome, several lines of evidence, such as PTEN phosphorylation, support that GLTSCR2 partakes in the suppression of tumor growth and development. However, much remains unknown about the molecular mechanisms of the tumor suppressive activity of GLTSCR2. The purpose of this study was to investigate the molecular mechanisms of GLTSCR2 in cell death pathways in association with its binding partner PTEN. In this work, we show that GLTSCR2 is a nucleus-localized protein with a discrete globular expression pattern. In addition to phosphorylating PTEN, GLTSCR2 induces caspase-independent PTEN-modulated apoptotic cell death when overexpressed. However, the cytotoxic activity of GLTSCR2 is independent of its ability to phosphorylate PTEN, suggesting that the GLTSCR2-induced cell death pathway is divergent from PTEN-induced death pathways. Our results suggest that the induction of PTEN-modulated apoptosis is one of the putative mechanisms of tumor suppressive activity by GLTSCR2.  相似文献   

11.
The tumor suppressor PTEN (phosphatase and tensin homologue) negatively regulates the PI3K pathway through its lipid phosphatase activity and is one of the most commonly lost tumor suppressors in human cancers. Though the tumor suppressive function involves the lipid phosphatase-dependent and -independent activities of PTEN, the mechanism leading to the phosphatase-independent function of PTEN is understood poorly. Some PTEN mutants have lipid phosphatase activity but fail to suppress cell growth. Here, we use a cancer-associated mutant, G20E, to gain insight into the phosphatase-independent function of PTEN by investigating protein-protein interactions using MS-based stable isotope labeling by amino acids in cell culture (SILAC). A strategy named parallel affinity purification (PAP) and SILAC has been developed to prioritize interactors and to compare the interactions between wild-type and G20E PTEN. Clustering of the prioritized interactors acquired by the PAP-SILAC approach shows three distinct clusters: 1) wild-type-specific interactors, 2) interactors unique to the G20E mutant, and 3) proteins common to wild-type and mutant. These interactors are involved mainly in cell migration and apoptosis pathways. We further demonstrate that the wild-type-specific interactor, NUDTL16L1, is required for the regulatory function of wild-type PTEN in cell migration. These findings contribute to a better understanding of the mechanisms of the phosphatase-dependent and -independent functions of PTEN.  相似文献   

12.
13.
The tumor suppressor activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10) is thought to be largely attributable to its lipid phosphatase activity. PTEN dephosphorylates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate to directly antagonize the phosphoinositide 3-kinase-Akt pathway and prevent the activating phosphorylation of Akt. PTEN has also other proposed mechanisms of action, including a poorly characterized protein phosphatase activity, protein–protein interactions, as well as emerging functions in different compartment of the cells such as nucleus and mitochondria. We show here that a fraction of PTEN protein localizes to the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs), signaling domains involved in calcium (2+) transfer from the ER to mitochondria and apoptosis induction. We demonstrate that PTEN silencing impairs ER Ca2+ release, lowers cytosolic and mitochondrial Ca2+ transients and decreases cellular sensitivity to Ca2+-mediated apoptotic stimulation. Specific targeting of PTEN to the ER is sufficient to enhance ER-to-mitochondria Ca2+ transfer and sensitivity to apoptosis. PTEN localization at the ER is further increased during Ca2+-dependent apoptosis induction. Importantly, PTEN interacts with the inositol 1,4,5-trisphosphate receptors (IP3Rs) and this correlates with the reduction in their phosphorylation and increased Ca2+ release. We propose that ER-localized PTEN regulates Ca2+ release from the ER in a protein phosphatase-dependent manner that counteracts Akt-mediated reduction in Ca2+ release via IP3Rs. These findings provide new insights into the mechanisms and the extent of PTEN tumor-suppressive functions, highlighting new potential strategies for therapeutic intervention.  相似文献   

14.
The tumor suppressor PTEN is now understood to regulate cellular processes at the cytoplasmic membrane, where it classically regulates PI3K signaling, as well as in the nucleus where multiple roles in controlling cell cycle and genome stability have been elucidated. Mechanisms that dictate nuclear import and, less extensively, nuclear export of PTEN have been described, however the relevance of these processes in disease states, particularly cancer, remain largely unknown. We investigated the impact of acid ceramidase on the nuclear-cytoplasmic trafficking of PTEN. Immunohistochemical analysis of a human prostate tissue microarray revealed that nuclear PTEN was lost in patients whose tumors had elevated acid ceramidase. We found that acid ceramidase promotes a reduction in nuclear PTEN that is dependent upon sphingosine 1-phosphate-mediated activation of Akt. We were further able to show that sphingosine 1-phosphate promotes formation of a complex between Crm1 and PTEN, and that leptomycin B prevents acid ceramidase and sphingosine 1-phosphate mediated loss of nuclear PTEN, suggesting an active exportin-mediated event. To investigate whether the tumor promoting aspects of acid ceramidase in prostate cancer depend upon its ability to export PTEN from the nucleus, we used enforced nuclear expression of PTEN to study docetaxel-induced apoptosis and cell killing, proliferation, and xenoengraftment. Interestingly, while acid ceramidase was able to protect cells expressing wild type PTEN from docetaxel, promote proliferation and xenoengraftment, acid ceramidase had no impact in cells expressing PTEN-NLS. These findings suggest that acid ceramidase, through sphingosine 1-phosphate, promotes nuclear export of PTEN as a means of promoting tumor formation, cell proliferation, and resistance to therapy.  相似文献   

15.
Activation of the PI3K-Akt pathway by loss of tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) function, increased growth factor signaling, or oncogene expression renders cancer cells resistant to apoptotic signals and promotes tumor growth. Although Akt acts as a global survival signal, the molecular circuits of this pathway have not been completely established. We report that Akt physically binds to the pro-apoptotic protein Par-4 via the Par-4 leucine zipper domain and phosphorylates Par-4 to inhibit apoptosis. Suppression of Akt activation by the PI3K-inhibitor PTEN or LY294002, Akt expression by RNA-interference, or Akt function by dominant-negative Akt caused apoptosis in cancer cells. Apoptosis induced by inhibiting Akt was blocked by inhibition of Par-4 expression, but not by inhibition of other apoptosis agonists that are Akt substrates, suggesting that inhibition of the PI3K-Akt pathway leads to Par-4-dependent apoptosis. Thus, Par-4 is essential for PTEN-inducible apoptosis, and inactivation of Par-4 by Akt promotes cancer cell survival.  相似文献   

16.
Vulval development in Caenorhabditis elegans serves as an excellent model to examine the crosstalk between different conserved signaling pathways that are deregulated in human cancer. The concerted action of the RAS/MAPK, NOTCH, and WNT pathways determines an invariant pattern of cell fates in three vulval precursor cells. We have discovered a novel form of crosstalk between components of the Insulin and the RAS/MAPK pathways. The insulin receptor DAF-2 stimulates, while DAF-18 PTEN inhibits, RAS/MAPK signaling in the vulval precursor cells. Surprisingly, the inhibitory activity of DAF-18 PTEN on the RAS/MAPK pathway is partially independent of its PIP(3) lipid phosphatase activity and does not involve further downstream components of the insulin pathway, such as AKT and DAF-16 FOXO. Genetic and biochemical analyses indicate that DAF-18 negatively regulates vulval induction by inhibiting MAPK activation. Thus, mutations in the PTEN tumor suppressor gene may result in the simultaneous hyper-activation of two oncogenic signaling pathways.  相似文献   

17.
18.
《Autophagy》2013,9(7):966-967
Over recent years, there have been substantial research advances on the mechanisms by which BCR-ABL transforms hematopoietic cells and promotes leukemic cell growth and survival. Among the diverse signaling cascades activated by BCR-ABL, the mTOR pathway plays a critical role in mRNA translation of genes that promote leukemogenesis and mitogenic responses. We have recently shown that dual targeting of mTORC1 and mTORC2 complexes using a catalytic mTOR inhibitor, OSI-027, results in generation of potent antileukemic effects against BCR-ABL transformed cells. Such effects were also seen in cells expressing the T315I mutation, which is resistant to all currently approved BCR-ABL kinase inhibitors. Our studies also demonstrate that such dual catalytic inhibition of mTORC2 and mTORC1 complexes in BCR-ABL-expressing K562 cells results in induction of autophagy, and that inhibition of the autophagic process using chloroquine promotes apoptosis of these cells. Altogether, our studies suggest that autophagy may be a limiting factor for the induction of apoptosis during dual mTORC2-mTORC1 targeting, in at least some types of BCR-ABL-expressing cells and have raised the potential of combinations of catalytic inhibitors of mTOR with autophagy inhibitors for the treatment of refractory Ph+ leukemias.  相似文献   

19.
The Akt pathway is very important in both development and cancer. Here we show that, expression of Casein Kinase I epsilon (CKIε) causes up-regulation of the Akt pathway despite normal protein expression of the pathway inhibitor phosphate and tensin homologue deleted on chromosome ten (PTEN). Conversely, we show that a CKIε/δ-specific inhibitor can inhibit Akt phosphorylation at both Thr308 and Ser473 and drastically reduce phosphorylation of the Akt target Glycogen Synthase Kinase 3β (GSK3β). These conclusions were confirmed between MCF7 cells transiently transfected with CKIε and Hs578T cells which already express endogenous CKIε. The results suggest that CKIε is a new positive regulator of the Akt pathway. Here we propose that, rather than inhibiting PTEN function, CKIε positively regulates Akt possibly by inhibiting Protein Phosphatase 2A (PP2A).  相似文献   

20.
The RET receptor tyrosine kinase is activated by GDNF and controls outgrowth and invasion of the ureteric bud epithelia in the developing kidney. In renal epithelial cells and in enteric neuronal precursor cells, activation of RET results in chemotaxis as Ret expressing cells invade the surrounding GDNF expressing tissue. One potential downstream signaling pathway governing RET mediated chemotaxis may require phosphatidylinositol 3-kinase (PI3K), which generates PI(3,4,5) triphosphate. The PTEN tumor suppressor gene encodes a protein and lipid phosphatase that regulates cell growth, apoptosis and many other cellular processes. PTEN helps regulate cellular chemotaxis by antagonizing the PI3K signaling pathway through dephosphorylation of phosphotidylinositol triphosphates. In this report, we show that PTEN suppresses RET mediated cell migration and chemotaxis in cell culture assays, that RET activation results in asymmetric localization of inositol triphosphates and that loss of PTEN affects the pattern of branching morphogenesis in developing mouse kidneys. These data suggest a critical role for the PI3K/PTEN axis in shaping the pattern of epithelial branches in response to RET activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号