首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
PTEN tumor suppressor is frequently mutated in human cancers, including breast cancers. Female patients with inherited PTEN mutations suffer from virginal hypertrophy of the breast with high risk of malignant transformation. However, the exact mechanisms of PTEN in controlling mammary gland development and tumorigenesis are unclear. In this study, we generated mice with a mammary-specific deletion of the Pten gene. Mutant mammary tissue displayed precocious lobulo-alveolar development, excessive ductal branching, delayed involution and severely reduced apoptosis. Pten null mammary epithelial cells were disregulated and hyperproliferative. Mutant females developed mammary tumors early in life. Similar phenotypes were observed in Pten-null mammary epithelia that had been transplanted into wild-type stroma, suggesting that PTEN plays an essential and cell-autonomous role in controlling the proliferation, differentiation and apoptosis of mammary epithelial cells.  相似文献   

4.
5.
As apoptotic pathways are commonly deregulated in breast cancer, exploring how mammary gland cell death is regulated is critical for understanding human disease. We show that primary mammary epithelial cells from protein kinase C delta (PKCδ) −/− mice have a suppressed response to apoptotic agents in vitro. In the mammary gland in vivo, apoptosis is critical for ductal morphogenesis during puberty and involution following lactation. We have explored mammary gland development in the PKCδ −/− mouse during these two critical windows. Branching morphogenesis was altered in 4- to 6-week-old PKCδ −/− mice as indicated by reduced ductal branching; however, apoptosis and proliferation in the terminal end buds was unaltered. Conversely, activation of caspase-3 during involution was delayed in PKCδ −/− mice, but involution proceeded normally. The thymus also undergoes apoptosis in response to physiological signals. A dramatic suppression of caspase-3 activation was observed in the thymus of PKCδ −/− mice treated with irradiation, but not mice treated with dexamethasone, suggesting that there are both target- and tissue-dependent differences in the execution of apoptotic pathways in vivo. These findings highlight a role for PKCδ in both apoptotic and nonapoptotic processes in the mammary gland and underscore the redundancy of apoptotic pathways in vivo.  相似文献   

6.
7.
8.
9.
A conditional null mutation of peroxisome proliferator-activated receptor-binding protein (PBP) gene was generated to understand its role in mammary gland development. PBP-deficient mammary glands exhibited retarded ductal elongation during puberty, and decreased alveolar density during pregnancy and lactation. PBP-deficient mammary glands could not produce milk to nurse pups during lactation. Both the mammary ductal elongation in response to estrogen treatment and the mammary lobuloalveolar proliferation stimulated by estrogen plus progesterone were attenuated in PBP-deficient mammary glands. The proliferation index was decreased in PBP-deficient mammary glands. PBP-deficient mammary epithelial cells expressed abundant beta-casein, whey acidic protein, and WDNM1 mRNA, indicating a relatively intact differentiated function. PBP-deficient epithelial cells were unable to form mammospheres, which were considered to be derived from mammary progenitor/stem cells. We conclude that PBP plays a pivotal role in the normal mammary gland development.  相似文献   

10.
11.
Signaling by members of the epidermal growth factor receptor family plays an important role in breast development and breast cancer. Earlier work suggested that one of these receptors, ErbB4, is coupled to unique responses in this tissue. To determine the function of ErbB4 signaling in the normal mouse mammary gland, we inactivated ErbB4 signaling by expressing a COOH terminally deleted dominant-negative allele of ErbB4 (ErbB4DeltaIC) as a transgene in the mammary gland. Despite the expression of ErbB4DeltaIC from puberty through later stages of mammary development, an ErbB4DeltaIC-specific phenotype was not observed until mid-lactation. At 12-d postpartum, lobuloalveoli expressing ErbB4DeltaIC protein were condensed and lacked normal lumenal lactation products. In these lobuloalveoli, beta-casein mRNA, detected by in situ hybridization, was normal. However, whey acidic protein mRNA was reduced, and alpha-lactalbumin mRNA was undetectable. Stat5 expression was detected by immunohistochemistry in ErbB4DeltaIC-expressing tissue. However, Stat5 was not phosphorylated at Y694 and was, therefore, probably inactive. When expressed transiently in 293T cells, ErbB4 induced phosphorylation of Stat5. This phosphorylation required an intact Stat5 SH2 domain. In summary, our results demonstrate that ErbB4 signaling is necessary for mammary terminal differentiation and Stat5 activation at mid-lactation.  相似文献   

12.
13.
STAT5 activation underlies IL7 receptor-dependent B cell development   总被引:8,自引:0,他引:8  
Signals initiated by the IL7R are required for B cell development. However, the roles that distinct IL7R-induced signaling pathways play in this process remains unclear. To identify the function of the Raf and STAT5 pathways in IL7R-dependent B cell development, we used transgenic mice that express constitutively active forms of Raf (Raf-CAAX) or STAT5 (STAT5b-CA) throughout lymphocyte development. Both Raf-CAAX and STAT5b-CA mice exhibit large increases in pro-B cells. However, crossing the Raf-CAAX transgene onto the IL7R(-/-) background fails to rescue B cell development. In contrast, STAT5 activation selectively restores B cell expansion in IL7R(-/-) mice. Notably, the expansion of pro-B cells in STAT5b-CA mice correlated with an increase in cyclin D2, pim-1, and bcl-x(L) expression, suggesting that STAT5 directly affects pro-B cell proliferation and survival. In addition, STAT5 activation also restored B cell differentiation in IL7R(-/-) mice as determined by 1) the restoration of V(H) Ig gene rearrangement and 2) the appearance of immature and mature B cell subsets. These findings establish STAT5 as the key player entraining B cell development downstream of the IL7R.  相似文献   

14.
15.
Polycomb Repressive Complex 2 (PRC2) exhibits key roles in mammalian development through its temporospatial repression of gene expression. EZH1 or EZH2 is the catalytic subunit of PRC2 that mediates the mono-, di- and tri-methylation of histone H3 lysine 27 (H3K27me1/2/3), H3K27me2/me3 being a hallmark of facultative heterochromatin. PRC2 is a chromatin-modifying enzyme that is recruited to a limited number of “nucleation sites”, spreads H3K27 methylation and fosters chromatin compaction. EZH1 and EZH2 exhibit differences in their expression patterns, levels of histone methyltransferase activity (HMT) in the context of PRC2, and DNA/nucleosome binding activity. This suggests that their roles in heterochromatin formation are disparate. Dysregulation of PRC2 activity leads to aberrant gene expression and is implicated in cancer and developmental diseases. In this review, we discuss the distinct function of PRC2/EZH1 and PRC2/EZH2 in the early and late developmental stages. We then discuss the cancers associated with PRC2/EZH1 and PRC2/EZH2.  相似文献   

16.
17.
J M Strum 《Tissue & cell》1978,10(3):505-514
Ultrastructural cytochemistry was used to detect an endogenous peroxidase in the rat mammary gland. The enzyme was identified only during the latter half of pregnancy and during lactation, indicating its possible dependence upon hormones. To test this hypothesis, specific hormones associated with the development and differentiation of the mammary gland were used both in vivo and in vitro in an effort to induce, or unmask, the activity of the enzyme. Estrogen injected into nonpregnant rats induced some peroxidase activity in the mammary glands of a few animals. Two hormone combinations tested in organ cultures of mouse mammary gland were able to activate the enzyme: (1) dexamethasone + insulin and (2) dexamethasone + insulin + prolactin.  相似文献   

18.
19.
It is well established that mammary gland development and lactation are tightly controlled by prolactin signaling. Binding of prolactin to its cognate receptor (Prl-R) leads to activation of the Jak-2 tyrosine kinase and the recruitment/tyrosine phosphorylation of STAT5a. However, the mechanisms for attenuating the Prl-R/Jak-2/STAT5a signaling cascade are just now being elucidated. Here, we present evidence that caveolin-1 functions as a novel suppressor of cytokine signaling in the mammary gland, akin to the SOCS family of proteins. Specifically, we show that caveolin-1 expression blocks prolactin-induced activation of a STAT5a-responsive luciferase reporter in mammary epithelial cells. Furthermore, caveolin-1 expression inhibited prolactin-induced STAT5a tyrosine phosphorylation and DNA binding activity, suggesting that caveolin-1 may negatively regulate the Jak-2 tyrosine kinase. Because the caveolin-scaffolding domain bears a striking resemblance to the SOCS pseudosubstrate domain, we examined whether Jak-2 associates with caveolin-1. In accordance with this homology, we demonstrate that Jak-2 cofractionates and coimmunoprecipitates with caveolin-1. We next tested the in vivo relevance of these findings using female Cav-1 (-/-) null mice. If caveolin-1 normally functions as a suppressor of cytokine signaling in the mammary gland, then Cav-1 null mice should show premature development of the lobuloalveolar compartment because of hyperactivation of the prolactin signaling cascade via disinhibition of Jak-2. In accordance with this prediction, Cav-1 null mice show accelerated development of the lobuloalveolar compartment, premature milk production, and hyperphosphorylation of STAT5a (pY694) at its Jak-2 phosphorylation site. In addition, the Ras-p42/44 MAPK cascade is hyper-activated. Because a similar premature lactation phenotype is observed in SOCS1 (-/-) null mice, we conclude that caveolin-1 is a novel suppressor of cytokine signaling.  相似文献   

20.
We have developed a mouse model of diet-induced obesity that shows numerous abnormalities relating to mammary gland function. Animals ate approximately 40% more calories when offered a high-fat diet and gained weight at three times the rate of controls. They exhibited reduced conception rates, increased peripartum pup mortality, and impaired lactogenesis. The impairment of lactogenesis involved lipid accumulation in the secretory epithelial cells indicative of an absence of copius milk secretion. Expression of mRNAs for beta-casein, whey acid protein, and alpha-lactalbumin were all decreased immediately postpartum but recovered as lactation was established over 2-3 days. Expression of acetyl-CoA carboxylase (ACC)-alpha mRNA was also decreased at parturition as was the total enzyme activity, although there was a compensatory increase in the proportion in the active state. By day 10 of lactation, the proportion of ACC in the active state was also decreased in obese animals, indicative of suppression of de novo fatty acid synthesis resulting from the supply of preformed fatty acids in the diet. Although obese animals consumed more calories in the nonpregnant and early pregnant states, they showed a marked depression in fat intake around day 9 of pregnancy before food intake recovered in later pregnancy. Food intake increased dramatically in both lean and obese animals during lactation although total calories consumed were identical in both groups. Thus, despite access to high-energy diets, the obese animals mobilized even more adipose tissue during lactation than their lean counterparts. Obese animals also exhibited marked abnormalities in alveolar development of the mammary gland, which may partially explain the delay in differentiation evident during lactogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号