首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of Clostridium perfringens epsilon toxin on rat isolated aorta was investigated. The toxin caused contraction of the isolated aorta in a dose-dependent manner. The toxin induced no contraction of the isolated aorta in low-Na medium and of the tissue stored at 4 C for 7 days. However, tetrodotoxin (TTX) had no effect on the toxin-induced contraction. The toxin-induced contraction was significantly inhibited by phentolamine and prazosine, but did not by atropine, mecamylamine, chlorpheniramine and methysergide. These data suggest that the toxin-caused contraction is mediated through nervous system in rat isolated aorta.  相似文献   

2.
Evidence from multiple studies suggests that Clostridium perfringens ε-toxin is a pore-forming toxin, assembling into oligomeric complexes in the plasma membrane of sensitive cells. In a previous study, we used gene-trap mutagenesis to identify mammalian factors contributing to toxin activity, including caveolin-2 (CAV2). In this study, we demonstrate the importance of caveolin-2 and its interaction partner, caveolin-1 (CAV1), in ε-toxin-induced cytotoxicity. Using CAV2-specific shRNA in a toxin-sensitive human kidney cell line, ACHN, we confirmed that cells deficient in CAV2 exhibit increased resistance to ε-toxin. Similarly, using CAV1-specific shRNA, we demonstrate that cells deficient in CAV1 also exhibit increased resistance to the toxin. Immunoprecipitation of CAV1 and CAV2 from ε-toxin-treated ACHN cells demonstrated interaction of both CAV1 and -2 with the toxin. Furthermore, blue-native PAGE indicated that the toxin and caveolins were components of a 670 kDa protein complex. Although ε-toxin binding was only slightly perturbed in caveolin-deficient cells, oligomerization of the toxin was dramatically reduced in both CAV1- and CAV2-deficient cells. These results indicate that CAV1 and -2 potentiate ε-toxin induced cytotoxicity by promoting toxin oligomerization – an event which is requisite for pore formation and, by extension, cell death.  相似文献   

3.
Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing''s chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel.  相似文献   

4.
Epsilon toxin (ET) produced by C. perfringens types B and D is a highly potent pore-forming toxin. ET-intoxicated animals express severe neurological disorders that are thought to result from the formation of vasogenic brain edemas and indirect neuronal excitotoxicity. The cerebellum is a predilection site for ET damage. ET has been proposed to bind to glial cells such as astrocytes and oligodendrocytes. However, the possibility that ET binds and attacks the neurons remains an open question. Using specific anti-ET mouse polyclonal antibodies and mouse brain slices preincubated with ET, we found that several brain structures were labeled, the cerebellum being a prominent one. In cerebellar slices, we analyzed the co-staining of ET with specific cell markers, and found that ET binds to the cell body of granule cells, oligodendrocytes, but not astrocytes or nerve endings. Identification of granule cells as neuronal ET targets was confirmed by the observation that ET induced intracellular Ca2+ rises and glutamate release in primary cultures of granule cells. In cultured cerebellar slices, whole cell patch-clamp recordings of synaptic currents in Purkinje cells revealed that ET greatly stimulates both spontaneous excitatory and inhibitory activities. However, pharmacological dissection of these effects indicated that they were only a result of an increased granule cell firing activity and did not involve a direct action of the toxin on glutamatergic nerve terminals or inhibitory interneurons. Patch-clamp recordings of granule cell somata showed that ET causes a decrease in neuronal membrane resistance associated with pore-opening and depolarization of the neuronal membrane, which subsequently lead to the firing of the neuronal network and stimulation of glutamate release. This work demonstrates that a subset of neurons can be directly targeted by ET, suggesting that part of ET-induced neuronal damage observed in neuronal tissue is due to a direct effect of ET on neurons.  相似文献   

5.
Using poly-(ethylene glycol)s of different molecular weights, we probe the channels formed in planar lipid bilayers by epsilon toxin secreted by the anaerobic bacterium Clostridium perfringens. We find that the pore is highly asymmetric. The cutoff size of polymers entering the pore through its opening from the cis side, the side of toxin addition, is ∼500 Da, whereas the cutoff size for the polymers entering from the trans side is ∼2300 Da. Comparing these characteristic molecular weights with those reported earlier for OmpF porin and the α-Hemolysin channel, we estimate the radii of cis and trans openings as 0.4 nm and 1.0 nm, respectively. The simplest geometry corresponding to these findings is that of a truncated cone. The asymmetry of the pore is also confirmed by measurements of the reversal potential at oppositely directed salt gradients. The moderate anionic selectivity of the channel is salted-out more efficiently when the salt concentration is higher at the trans side of the pore.  相似文献   

6.
7.
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB.  相似文献   

8.
Tau is a microtubule-associated protein that is genetically linked to dementia and linked to Alzheimer’s disease via its presence in intraneuronal neurofibrillary tangle deposits, where it takes the form of aggregated paired helical and straight filaments. Although the precise mechanisms by which tau contributes to neurodegeneration remain unclear, tau aggregation is commonly considered to be a critical component of tau-mediated pathogenicity. Nevertheless, the context in which tau aggregation begins in vivo is unknown. Tau is enriched in membrane-rich neuronal structures such as axons and growth cones, and can interact with membranes both via intermediary proteins and directly via its microtubule-binding domain (MBD). Membranes efficiently facilitate tau aggregation in vitro, and may therefore provide a physiologically relevant context for nucleating tau aggregation in vivo. Furthermore, tau-membrane interactions may potentially play a role in tau’s poorly understood normal physiological functions. Despite the potential importance of direct tau-membrane interactions for tau pathology and physiology, the structural mechanisms that underlie such interactions remain to be elucidated. Here, we employ electron spin resonance spectroscopy to investigate the secondary and long-range structural properties of the MBD of three-repeat tau isoforms when bound to lipid vesicles and membrane mimetics. We show that the membrane interactions of the tau MBD are mediated by short amphipathic helices formed within each of the MBD repeats in the membrane-bound state. To our knowledge, this is the first detailed elucidation of helical tau structure in the context of intact lipid bilayers. We further show, for the first time (to our knowledge), that these individual helical regions behave as independent membrane-binding sites linked by flexible connecting regions. These results represent the first (to our knowledge) detailed structural view of membrane-bound tau and provide insights into potential mechanisms for membrane-mediated tau aggregation. Furthermore, the results may have implications for the structural basis of tau-microtubule interactions and microtubule-mediated tau aggregation.  相似文献   

9.
Tau is a microtubule-associated protein that is genetically linked to dementia and linked to Alzheimer’s disease via its presence in intraneuronal neurofibrillary tangle deposits, where it takes the form of aggregated paired helical and straight filaments. Although the precise mechanisms by which tau contributes to neurodegeneration remain unclear, tau aggregation is commonly considered to be a critical component of tau-mediated pathogenicity. Nevertheless, the context in which tau aggregation begins in vivo is unknown. Tau is enriched in membrane-rich neuronal structures such as axons and growth cones, and can interact with membranes both via intermediary proteins and directly via its microtubule-binding domain (MBD). Membranes efficiently facilitate tau aggregation in vitro, and may therefore provide a physiologically relevant context for nucleating tau aggregation in vivo. Furthermore, tau-membrane interactions may potentially play a role in tau’s poorly understood normal physiological functions. Despite the potential importance of direct tau-membrane interactions for tau pathology and physiology, the structural mechanisms that underlie such interactions remain to be elucidated. Here, we employ electron spin resonance spectroscopy to investigate the secondary and long-range structural properties of the MBD of three-repeat tau isoforms when bound to lipid vesicles and membrane mimetics. We show that the membrane interactions of the tau MBD are mediated by short amphipathic helices formed within each of the MBD repeats in the membrane-bound state. To our knowledge, this is the first detailed elucidation of helical tau structure in the context of intact lipid bilayers. We further show, for the first time (to our knowledge), that these individual helical regions behave as independent membrane-binding sites linked by flexible connecting regions. These results represent the first (to our knowledge) detailed structural view of membrane-bound tau and provide insights into potential mechanisms for membrane-mediated tau aggregation. Furthermore, the results may have implications for the structural basis of tau-microtubule interactions and microtubule-mediated tau aggregation.  相似文献   

10.
International Journal of Peptide Research and Therapeutics - Epsilon toxin (ETX) is one of four lethal toxins of Clostridium perfringens produced by types B and D of the pathogen. This pore-forming...  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a key membrane protein in the complex network of epithelial ion transporters regulating epithelial permeability. Syntaxins are one of the major determinants in the intracellular trafficking and membrane targeting of secretory proteins. In the present study we demonstrate the biochemical and functional association between CFTR and syntaxin 16 (STX16) that mediates vesicle transport within the early/late endosomes and trans-Golgi network. Immunoprecipitation experiments in rat colon and T84 human colonic epithelial cells indicate that STX16 associates with CFTR. Further analyses using the domain-specific pulldown assay reveal that the helix domain of STX16 directly interacts with the N-terminal region of CFTR. Immunostainings in rat colon and T84 cells show that CFTR and STX16 highly co-localize at the apical and subapical regions of epithelial cells. Interestingly, CFTR-associated chloride current was reduced by the knockdown of STX16 expression in T84 cells. Surface biotinylation and recycling assays indicate that the reduction in CFTR chloride current is due to decreased CFTR expression on the plasma membrane. These results suggest that STX16 mediates recycling of CFTR and constitutes an important component of CFTR trafficking machinery in intestinal epithelial cells.  相似文献   

12.
13.
R Swett  GA Cisneros  AL Feig 《PloS one》2012,7(7):e41518
Clostridium difficile (C. difficile) is an opportunistic pathogen that can cause potentially lethal hospital-acquired infections. The cellular damage that it causes is the result of two large clostridial cytotoxins: TcdA and TcdB which act by glucosylating cytosolic G-proteins, mis-regulation of which induces apoptosis. TcdB is a large flexible protein that appears to undergo significant structural rearrangement upon accommodation of its substrates: UDP-glucose and a Rho-family GTPase. To characterize the conformational space of TcdB, we applied normal mode and hinge-region analysis, followed by long-timescale unbiased molecular dynamics. In order to examine the TcdB and RhoA interaction, macromolecular docking and simulation of the TcdB/RhoA complex was performed. Generalized Masked Delaunay analysis of the simulations determined the extent of significant motions. This combination of methods elucidated a wide range of motions within TcdB that are reiterated in both the low-cost normal mode analysis and the extensive MD simulation. Of particular interest are the coupled motions between a peripheral 4-helix bundle and a small loop in the active site that must rearrange to allow RhoA entry to the catalytic site. These extensive coupled motions are indicative of TcdB using a conformational capture mechanism for substrate accommodation.  相似文献   

14.
The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a β-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells.  相似文献   

15.
Ianutsevich  E. A.  Danilova  O. A.  Tereshina  V. M. 《Microbiology》2020,89(4):405-412

Adaptive response (changes in the composition of osmolytes and membrane lipids) of the mycelial fungus Aspergillus niger to combinatorial action of oxidative and heat (or osmotic) shocks was studied. Oxidative shock was found to cause no significant changes in the composition of osmolytes. A combination of oxidative shock with other stressors was shown to suppress their adaptive responses, such as accumulation of trehalose (during heat shock) and polyols (during osmotic shock). A common pattern of the changes in membrane lipids observed for all the studied stress factors was an increase in the proportion of non-bilayer phosphatidic acids, which was more pronounced in the case of combinatorial stress effects. No significant changes in the degree of unsaturation of membrane phospholipids were observed. Thus, the studied combinatorial shocks did not result in an additive response and caused a decrease in the amount of osmolytes compared with individual stressors, which weakened the adaptive response of the fungus.

  相似文献   

16.
The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.  相似文献   

17.
The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.  相似文献   

18.
Abstract: Plasminogen (PGn) that we identified in microglial-conditioned medium has a neurotrophic factor-like effect on cultured neurons. We have also shown that PGn binds specifically to a protein with a molecular mass of 45 kDa in the neuronal plasma membrane. As a candidate PGn receptor-like molecule on the neuronal surface, this 45-kDa protein was purified from the plasma membrane of embryonic rat brain. Amino acid sequence analysis of polypeptides derived from the cleavage of the protein with cyanogen bromide and V8 protease revealed that the 45-kDa protein is identical to rat α-enolase. In fact, PGn was found to bind to purified rat α-enolase and also to a synthetic peptide (30 residues) that corresponds to the carboxyl terminal region of rat α-enolase. Physical properties of the 45-kDa protein, such as molecular mass, isoelectric point, and the ability to form dimers, are quite similar to those of α-enolase. The 45-kDa PGn-binding protein in the plasma membrane was also recognized by anti-rat α-enolase antibody, and pretreatment with α-enolase antibody markedly diminished the PGn-binding to the plasma membrane. In addition, immunocytochemical staining of the cultured cells under the nonpermeable condition showed that α-enolase is present on the cell surface of a certain population of neurons. These results suggest that α-enolase may function as a PGn-binding molecule on the neuronal cell surface.  相似文献   

19.
膜脂是生物膜的基本骨架,膜蛋白是膜功能的主要体现者。生物膜脂研究是生物膜研究的一个重要组成部分。结合近几年来的新进展,从生物膜脂的分离和脂肪酸的分析角度出发,综合评述了应用于脂类物质分析的TLC、GC、HPLC、CE为代表的主要分析方法,以及CE-MS、HPLC-MS在脂类物质分析中的应用前景。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号