首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble fermentable dietary fibre elicits gut adaptations, increases satiety and potentially offers a natural sustainable means of body weight regulation. Here we aimed to quantify physiological responses to graded intakes of a specific dietary fibre (pectin) in an animal model. Four isocaloric semi-purified diets containing 0, 3.3%, 6.7% or 10% w/w apple pectin were offered ad libitum for 8 or 28 days to young adult male rats (n = 8/group). Measurements were made of voluntary food intake, body weight, initial and final body composition by magnetic resonance imaging, final gut regional weights and histology, and final plasma satiety hormone concentrations. In both 8- and 28-day cohorts, dietary pectin inclusion rate was negatively correlated with food intake, body weight gain and the change in body fat mass, with no effect on lean mass gain. In both cohorts, pectin had no effect on stomach weight but pectin inclusion rate was positively correlated with weights and lengths of small intestine and caecum, jejunum villus height and crypt depth, ileum crypt depth, and plasma total glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) concentrations, and at 8 days was correlated with weight and length of colon and with caecal mucosal depth. Therefore, the gut’s morphological and endocrine adaptations were dose-dependent, occurred within 8 days and were largely sustained for 28 days during continued dietary intervention. Increasing amounts of the soluble fermentable fibre pectin in the diet proportionately decreased food intake, body weight gain and body fat content, associated with proportionately increased satiety hormones GLP-1 and PYY and intestinal hypertrophy, supporting a role for soluble dietary fibre-induced satiety in healthy body weight regulation.  相似文献   

2.
High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.  相似文献   

3.
This study first investigated the effects of corn gluten hydrolysate (CGH) (1.5 g/day) administration for 7 days on appetite-responsive genes in lean Sprague-Dawley (SD) rats. In a second set of experiments, the metabolic changes occurring at multiple time points over 8 weeks in response to CGH (35.33% wt/wt) were observed in high-fat (HF, 60% of energy as fat) diet-fed SD rats. In lean rats, the hypothalamus neuropeptide-Y and proopiomelanocortin mRNA levels of the CGH group were significantly changed in response to CGH administration. In the second part of the study, CGH treatment was found to reduce body weight and perirenal and epididymal fat weight. CGH also prevented an increase in food intake at 2 weeks and lowered plasma leptin and insulin levels in comparison with the HF group. This reduction in the plasma and hepatic lipid levels was followed by improved insulin resistance, and the beneficial metabolic effects of CGH were also partly related to increases in plasma adiponectin levels. The Homeostasis Model of Assessment - Insulin Resistance (HOMA-IR), an index of insulin resistance, was markedly improved in the HF-CGH group compared with the HF group at 6 weeks. According to the microarray results, adipose tissue mRNA expression related to G-protein coupled receptor protein signaling pathway and sensory perception was significantly improved after 8 weeks of CGH administration. In conclusion, the present findings suggest that dietary CGH may be effective for improving hyperglycemia, dyslipidemia and insulin resistance in diet-induced obese rats as well as appetite control in lean rats.  相似文献   

4.
5.

Scopes

To investigate the effects of high-fat diet enriched with lard oil or soybean oil on liver endoplasmic reticulum (ER) stress and inflammation markers in diet-induced obese (DIO) rats and estimate the influence of following low-fat diet feeding.

Methods and Results

Male SD rats were fed with standard low-fat diet (LF, n = 10) and two isoenergentic high-fat diets enriched with lard (HL, n = 45) or soybean oil (HS, n = 45) respectively for 10 weeks. Then DIO rats from HL and HS were fed either high-fat diet continuously (HL/HL, HS/HS) or switched to low-fat diet (HL/LF, HS/LF) for another 8 weeks. Rats in control group were maintained with low-fat diet. Body fat, serum insulin level, HOMA-IR and ectopic lipid deposition in liver were increased in HL/HL and HS/HS compared to control, but increased to a greater extent in HL/HL compared to HS/HS. Markers of ER stress including PERK and CHOP protein expression and phosphorylation of eIF2α were significantly elevated in HL/HL group while phosphorylation of IRE1α and GRP78 protein expression were suppressed in both HL/HL and HS/HS. Besides, inflammatory signals (OPN, TLR2, TLR4 and TNF-α) expressions significantly increased in HL/HL compared to others. Switching to low-fat diet reduced liver fat deposition, HOMA-IR, mRNA expression of TLR4, TNF-α, PERK in both HL/LF and HS/LF, but only decreased protein expression of OPN, PERK and CHOP in HL/LF group. In addition, HL/LF and HS/LF exhibited decreased phosphorylation of eIF2α and increased phosphorylation of IRE1α and GRP78 protein expression when compared with HL/HL and HS/HS respectively.

Conclusions

Lard oil was more deleterious in insulin resistance and hepatic steatosis via promoting ER stress and inflammation responses in DIO rats, which may be attributed to the enrichment of saturated fatty acid. Low-fat diet was confirmed to be useful in recovering from impaired insulin sensitivity and liver fat deposition in this study.  相似文献   

6.
Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.  相似文献   

7.

Introduction

Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs), particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.

Objective

To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.

Material and Methods

Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin – acetic acid; guar gum – propionic acid; or a mixture – butyric acid). At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.

Results and Discussion

Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.  相似文献   

8.
The aim of this study was to investigate how physico-chemical properties of two dietary fibres, guar gum and pectin, affected weight gain, adiposity, lipid metabolism, short-chain fatty acid (SCFA) profiles and the gut microbiota in male Wistar rats fed either low- or high-fat diets for three weeks. Both pectin and guar gum reduced weight gain, adiposity, liver fat and blood glucose levels in rats fed a high-fat diet. Methoxylation degree of pectin (low, LM and high (HM)) and viscosity of guar gum (low, medium or high) resulted in different effects in the rats, where total blood and caecal amounts of SCFA were increased with guar gum (all viscosities) and with high methoxylated (HM) pectin. However, only guar gum with medium and high viscosity increased the levels of butyric acid in caecum and blood. Both pectin and guar gum reduced cholesterol, liver steatosis and blood glucose levels, but to varying extent depending on the degree of methoxylation and viscosity of the fibres. The medium viscosity guar gum was the most effective preparation for prevention of diet-induced hyperlipidaemia and liver steatosis. Caecal abundance of Akkermansia was increased with high-fat feeding and with HM pectin and guar gum of all viscosities tested. Moreover, guar gum had distinct bifidogenic effects independent of viscosity, increasing the caecal abundance of Bifidobacterium ten-fold. In conclusion, by tailoring the viscosity and possibly also the degree of methoxylation of dietary fibre, metabolic effects may be optimized, through a targeted modulation of the gut microbiota and its metabolites.  相似文献   

9.
The aims of this study were to: describe dietary intakes of obese and nonobese middle-aged women using a validated food frequency questionnaire; to assess dietary restraint, disinhibition, and hunger by the three factor eating questionnaire (TFEQ) in obese and nonobese samples and determine which of the factors are independently associated with obesity; and to examine correlations between selected nutritional variables and the TFEQ factors. Subjects studied included 179 obese Swedish women (BMI>32) and 147 nonobese population-based controls (BMI<28). Age-adjusted mean energy intake was significantly higher in obese women (2730 ± 78 vs. 2025 ± 85 kcal, p<0.0001). In absolute and relative terms, fat intake was higher and alcohol intake was lower in the obese subjects. Disinhibition was the strongest TFEQ factor independently differentiating the obese and nonobese states, i.e., after adjustment for restraint and hunger. Within the obese sample, strong associations were seen between energy intake and disinhibition (p=0.0005) and hunger (p=0.0004). The association between energy intake and restrained eating was negative and weaker (p=0.04). No such associations were seen in nonobese women. Thus, using a dietary instrument that is valid and unbiased with respect to obesity, strong psychological correlates, possibly causal, of variability in energy intake were detected in middle-aged women with obesity. Disinhibition is associated with both obesity and high-energy intakes and is therefore an important factor to consider in the treatment of women with obesity.  相似文献   

10.
The effects of soybean-derived phospholipid, PIPS NAGASETM (PIPS), on obesity-induced diseases were studied in obese rats. Dietary PIPS alleviated hepatomegaly and fatty liver in the rats. These effects were attributable to reduced lipogenesis and enhanced lipolysis in the liver. The results suggest that PIPS can be useful as a dietary component that would reduce the risk of lifestyle-related diseases.  相似文献   

11.
In obesity, cardiac insulin resistance is a putative cause of cardiac hypertrophy and dysfunction. In our previous study, we observed that Magnolia extract BL153 attenuated high-fat-diet (HFD)-induced cardiac pathogenic changes. In this study, we further investigated the protective effects of the BL153 bioactive constituent, 4-O-methylhonokiol (MH), against HFD-induced cardiac pathogenesis and its possible mechanisms. C57BL/6J mice were fed a normal diet or a HFD with gavage administration of vehicle, BL153, or MH (low or high dose) daily for 24 weeks. Treatment with MH attenuated HFD-induced obesity, as evidenced by body weight gain, and cardiac pathogenesis, as assessed by the heart weight and echocardiography. Mechanistically, MH treatment significantly reduced HFD-induced impairment of cardiac insulin signaling by preferentially augmenting Akt2 signaling. MH also inhibited cardiac expression of the inflammatory factors tumor necrosis factor-α and plasminogen activator inhibitor-1 and increased the phosphorylation of nuclear factor erythroid-derived 2-like 2 (Nrf2) as well as the expression of a Nrf2 downstream target gene heme oxygenase-1. The increased Nrf2 signaling was associated with decreased oxidative stress and damage, as reflected by lowered malondialdehyde and 3-nitrotyrosine levels. Furthermore, MH reduced HFD-induced cardiac lipid accumulation along with lowering expression of cardiac fatty acid translocase/CD36 protein. These results suggest that MH, a bioactive constituent of Magnolia, prevents HFD-induced cardiac pathogenesis by attenuating the impairment of cardiac insulin signaling, perhaps via activation of Nrf2 and Akt2 signaling to attenuate CD36-mediated lipid accumulation and lipotoxicity.  相似文献   

12.
BESSESEN, DANIEL H, CONNIE L RUPP AND ROBERT H ECKEL. Dietary fat is shunted away from oxidation, toward storage in obese zucker rats. Obes Res. 1995;3:179–189. Previous measurements of lipoprotein lipase (LPL) activity in adipose tissue (ATLPL) of lean and obese Zucker rats have consistently documented increased activity in obese rats relative to lean. Since LPL is considered to be rate limiting for the delivery of triglyceride fatty acids (TGFA) to muscle and adipose tissue, these data have been used to suggest that the metabolic partitioning of TGFA favors storage over oxidation in obese rats. To document the partitioning of TGFA directly, the fate of 14C labeled oleic acid (42nmols) was fed to lean, obese, and obese Zucker rats fed a hypocaloric diet designed to chronically reduce weight 25% below that of obese controls (reduced-obese). The amount of 14C recovered in CO2 over 6 hours following ingestion was significantly less in obese rats compared to lean (0.45 ± 0.06 vs. 0.88 ± 0.09nmols, p=.0004) and less still in the reduced obese group (0.34 ± 0.06nmols p=.00003). Six hours after ingestion, the quantity of label found in adipose tissue was significantly greater in the obese rats compared to lean (14.51 ± 1.92 vs. 1.38 ± 0.29nmols p<.00001), but was intermediate in the reduced-obese group (9.23 ± 0.98nmols p=.0003). At 2.2 hours there was significantly more label in skeletal muscle of lean rats compared to either obese or reduced-obese (2.33 ± 0.24; 1.35 ± 0.04nmols p=.01; 1.41 ± 0.27nm p=.02). However, at 6 hours these differences between groups were no longer present. These findings Indicate that dietary fat is shunted away from oxidation toward storage in obese Zucker rats. Additionally it appears that there may be a relative block in the oxidation of TGFA that is taken up by skeletal muscle in obese rats. Finally the relative normalization of this partitioning defect in reduced-obese rats is at variance with what was suggested by previous measurements of tissue specific levels of LPL, and suggests an enhanced recirculation of fatty acids from adipose tissue to muscle in reduced-obese rats. This could occur through increased delivery of non-esterified fatty acids (NEFA) to muscle as a result of an increase in net lipolysis.  相似文献   

13.

Background

Obesity is recognized as a leading global health problem, correlated with an increased risk for several chronic diseases. One strategy for weight control management includes the use of vegetables rich in bioactive compounds to counteract weight gain, improve the antioxidant status and stimulate lipid catabolism.

Aim of the Study

The aim of this study was to investigate the role of Raphanus sativus Sango sprout juice (SSJ), a Brassica extraordinarily rich in anthocyanins (AC) and isothiocyanates (ITCs), in a non-genetic model of obesity (high fat diet-HFD induced).

Methods

Control groups were fed with HFD or regular diet (RD). After a 10-week period, animals were assigned to experimental units and treated by gavage for 28 days as follows: HFD and RD control groups (rats fed HFD or RD and treated with vehicle only) and HFD-treated groups (rats fed HFD and treated with 15, 75 or 150 mg/kg b.w. of SSJ). Body weight and food consumption were recorded and serum lipid profile was measured (total cholesterol, triglycerides, and non-esterified fatty acids). Hepatic phase-I, phase-II as well as antioxidant enzymatic activities were assessed.

Results

SSJ lowered total cholesterol level, food intake and liver weight compared with HFD rodents. SSJ at medium dose proved effective in reducing body-weight (~19 g reduction). SSJ was effective in up-regulating the antioxidant enzymes catalase, NAD(P)H:quinone reductase, oxidised glutathione reductase and superoxide dismutase, which reached or exceeded RD levels, as well as the phase II metabolic enzyme UDP-glucuronosyl transferase (up to about 43%). HFD up-regulated almost every cytochrome P450 isoform tested, and a mild down-regulation to baseline was observed after SSJ intervention.

Conclusion

This work reveals, for the first time, the antioxidant, hypolipidemic and antiobesity potential of SSJ, suggesting its use as an efficient new functional food/nutraceutical product.  相似文献   

14.
Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.  相似文献   

15.

Background

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model.

Methodology/Principal Findings

Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress.

Conclusions/Significance

These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.  相似文献   

16.

Background

Obesity and associated hormonal disturbances are risk factors for colon cancer. Cytosolic Malic Enzyme (ME1) generates NADPH used for lipogenesis in gastrointestinal (GI), liver and adipose tissues. We have reported that inclusion of soy protein isolate (SPI) in the diet lowered body fat content and colon tumor incidence of rats fed AIN-93G diet, while others have demonstrated SPI inhibition of rat hepatic ME1 expression. The present study examined the individual and combined effects of dietary SPI and absence of ME1 on: 1) serum concentrations of hormones implicated in colon cancer development, 2) expression of lipogenic and proliferation-associated genes in the mouse colon and small intestine, and 3) liver and adipose expression of lipogenic and adipocytokine genes that may contribute to colon cancer predisposition.

Methods

Weanling wild type (WT) and ME1 null (MOD-1) male mice were fed high-fat (HF), iso-caloric diets containing either casein (CAS) or SPI as sole protein source for 5 wks. Somatic growth, serum hormone and glucose levels, liver and adipose tissue weights, GI tissue parameters, and gene expression were evaluated.

Results

The MOD-1 genotype and SPI-HF diet resulted in decreases in: body and retroperitoneal fat weights, serum insulin, serum leptin, leptin/adiponectin ratio, adipocyte size, colon mTOR and cyclin D1 mRNA abundance, and jejunum FASN mRNA abundance, when compared to WT mice fed CAS-HF. Regardless of diet, MOD-1 mice had reductions in liver weight, liver steatosis, and colon crypt depth, and increases in adipose tissue expression of IRS1 and IRS2, compared to WT mice. SPI-HF diet reduced ME1 gene expression only in retroperitoneal fat.

Conclusions

Data suggest that the pharmacological targeting of ME1 or the inclusion of soy protein in the diet may provide avenues to reduce obesity and its associated pro-tumorigenic endocrine environment and improve insulin sensitivity, potentially disrupting the obesity-colon cancer connection.  相似文献   

17.
18.
Weight loss diets for humans that are based on a high intake of protein but low intake of fermentable carbohydrate may alter microbial activity and bacterial populations in the large intestine and thus impact on gut health. In this study, 19 healthy, obese (body mass index range, 30 to 42) volunteers were given in succession three different diets: maintenance (M) for 3 days (399 g carbohydrate/day) and then high protein/medium (164 g/day) carbohydrate (HPMC) and high protein/low (24 g/day) carbohydrate (HPLC) each for 4 weeks. Stool samples were collected at the end of each dietary regimen. Total fecal short-chain fatty acids were 114 mM, 74 mM, and 56 mM (P < 0.001) for M, HPMC, and HPLC diets, respectively, and there was a disproportionate reduction in fecal butyrate (18 mM, 9 mM, and 4 mM, respectively; P < 0.001) with decreasing carbohydrate. Major groups of fecal bacteria were monitored using nine 16S rRNA-targeted fluorescence in situ hybridization probes, relative to counts obtained with the broad probe Eub338. No significant change was seen in the relative counts of the bacteroides (Bac303) (mean, 29.6%) or the clostridial cluster XIVa (Erec482, 23.3%), cluster IX (Prop853, 9.3%), or cluster IV (Fprau645, 11.6%; Rbro730 plus Rfla729, 9.3%) groups. In contrast, the Roseburia spp. and Eubacterium rectale subgroup of cluster XIVa (11%, 8%, and 3% for M, HPMC, and HPLC, respectively; P < 0.001) and bifidobacteria (4%, 2.1%, and 1.9%, respectively; P = 0.026) decreased as carbohydrate intake decreased. The abundance of butyrate-producing bacteria related to Roseburia spp. and E. rectale correlated well with the decline in fecal butyrate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号