首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that AUXIN RESPONSE FACTOR17 (ARF17) is essential for primexine formation and pollen development in Arabidopsis (Arabidopsis thaliana). The arf17 mutant exhibited a male-sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy analysis showed that primexine was absent in the arf17 mutant, which leads to pollen wall-patterning defects and pollen degradation. Callose deposition was also significantly reduced in the arf17 mutant, and the expression of CALLOSE SYNTHASE5 (CalS5), the major gene for callose biosynthesis, was approximately 10% that of the wild type. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that ARF17 can directly bind to the CalS5 promoter. As indicated by the expression of DR5-driven green fluorescent protein, which is an synthetic auxin response reporter, auxin signaling appeared to be specifically impaired in arf17 anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of CalS5 gene expression.In angiosperms, the pollen wall is the most complex plant cell wall. It consists of the inner wall, the intine, and the outer wall, the exine. The exine is further divided into sexine and nexine layers. The sculptured sexine includes three major parts: baculum, tectum, and tryphine (Heslop-Harrison, 1971; Piffanelli et al., 1998; Ariizumi and Toriyama, 2011; Fig. 1A). Production of a functional pollen wall requires the precise spatial and temporal cooperation of gametophytic and sporophytic tissues and metabolic events (Blackmore et al., 2007). The intine layer is controlled gametophytically, while the exine is regulated sporophytically. The sporophytic tapetum cells provide material for pollen wall formation, while primexine determines pollen wall patterning (Heslop-Harrison, 1968).Open in a separate windowFigure 1.Schematic representation of the pollen wall and primexine development. A, The innermost layer adjacent to the plasma membrane is the intine. The bacula (Ba), tectum (Te), and tryphine (T) make up the sexine layer. The nexine is located between the intine and the sexine layers. The exine includes the nexine and sexine layers. B, Primexine (Pr) appears between callose (Cl) and plasma membrane (Pm) at the early tetrad stage (left panel). Subsequently, the plasma membrane becomes undulated (middle panel) and sporopollenin deposits on the peak of the undulated plasma membrane to form bacula and tectum (right panel).After meiosis, four microspores were encased in callose to form a tetrad. Subsequently, the primexine develops between the callose layer and the microspore membrane (Fig. 1B), and the microspore plasma membrane becomes undulated (Fig. 1B; Fitzgerald and Knox, 1995; Southworth and Jernstedt, 1995). Sporopollenin precursors then accumulate on the peak of the undulated microspore membrane to form the bacula and tectum (Fig. 1B; Fitzgerald and Knox, 1995). After callose degradation, individual microspores are released from the tetrad, and the bacula and tectum continue to grow into exine with further sporopollenin deposition (Fitzgerald and Knox, 1995; Blackmore et al., 2007).The callose has been reported to affect primexine deposition and pollen wall pattern formation. The peripheral callose layer, secreted by the microsporocyte, acts as the mold for primexine (Waterkeyn and Bienfait, 1970; Heslop-Harrison, 1971). CALLOSE SYNTHASE5 (CalS5) is the major enzyme responsible for the biosynthesis of the callose peripheral of the tetrad (Dong et al., 2005; Nishikawa et al., 2005). Mutation of Cals5 and abnormal CalS5 pre-mRNA splicing resulted in defective peripheral callose deposition and primexine formation (Dong et al., 2005; Nishikawa et al., 2005; Huang et al., 2013). Besides CalS5, four membrane-associated proteins have also been reported to be involved in primexine formation: DEFECTIVE EXINE FORMATION1 (DEX1; Paxson-Sowders et al., 1997, 2001), NO EXINE FORMATION1 (NEF1; Ariizumi et al., 2004), RUPTURED POLLEN GRAIN1 (RPG1; Guan et al., 2008; Sun et al., 2013), and NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION (NPU; Chang et al., 2012). Mutation of DEX1 results in delayed primexine formation (Paxson-Sowders et al., 2001). The primexine in nef1 is coarse compared with the wild type (Ariizumi et al., 2004). The loss-of-function rpg1 shows reduced primexine deposition (Guan et al., 2008; Sun et al., 2013), while the npu mutant does not deposit any primexine (Chang et al., 2012). Recently, it was reported that Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE G1 (CDKG1) associates with the spliceosome to regulate the CalS5 pre-mRNA splicing for pollen wall formation (Huang et al., 2013). Clearly, disrupted primexine deposition leads to aberrant pollen wall patterning and ruptured pollen grains in these mutants.The plant hormone auxin has multiple roles in plant reproductive development (Aloni et al., 2006; Sundberg and Østergaard, 2009). Knocking out the two auxin biosynthesis genes, YUC2 and YUC6, caused an essentially sterile phenotype in Arabidopsis (Cheng et al., 2006). Auxin transport is essential for anther development; defects in auxin flow in anther filaments resulted in abnormal pollen mitosis and pollen development (Feng et al., 2006). Ding et al. (2012) showed that the endoplasmic reticulum-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Evidence for the localization, biosynthesis, and transport of auxin indicates that auxin regulates anther dehiscence, pollen maturation, and filament elongation during late anther development (Cecchetti et al., 2004, 2008). The role of auxin in pollen wall development has not been reported.The auxin signaling pathway requires the auxin response factor (ARF) family proteins (Quint and Gray, 2006; Guilfoyle and Hagen, 2007; Mockaitis and Estelle, 2008; Vanneste and Friml, 2009). ARF proteins can either activate or repress the expression of target genes by directly binding to auxin response elements (AuxRE; TGTCTC/GAGACA) in the promoters (Ulmasov et al., 1999; Tiwari et al., 2003). The Arabidopsis ARF family contains 23 members. A subgroup in the ARF family, ARF10, ARF16, and ARF17, are targets of miRNA160 (Okushima et al., 2005b; Wang et al., 2005). Plants expressing miR160-resistant ARF17 exhibited pleiotropic developmental defects, including abnormal stamen structure and reduced fertility (Mallory et al., 2005). This indicates a potential role for ARF17 in plant fertility, although the detailed function remains unknown. In addition, ARF17 was also proposed to negatively regulate adventitious root formation (Sorin et al., 2005; Gutierrez et al., 2009), although an ARF17 knockout mutant was not reported and its phenotype is unknown.In this work, we isolated and characterized a loss-of-function mutant of ARF17. Results from cytological observations suggest that ARF17 controls callose biosynthesis and primexine deposition. Consistent with this, the ARF17 protein is highly abundant in microsporocytes and tetrads. Furthermore, we demonstrate that the ARF17 protein is able to bind the promoter region of CalS5. Our results suggest that ARF17 regulates pollen wall pattern formation in Arabidopsis.  相似文献   

4.
5.
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.

Introduction

Microtubules are key elements of the eukaryotic cytoskeleton that dynamically assemble from heterodimers of α- and β-tubulin. The structure of microtubules, as well as the protein sequences of α- and β-tubulin, is highly conserved in evolution, and consequently, microtubules look alike in almost all species. Despite the high level of conservation, microtubules adapt to a large variety of cellular functions. This adaptation can be mediated by a large panel of microtubule-associated proteins (MAPs), including molecular motors, as well as by mechanisms that directly modify the microtubules, thus either changing their biophysical properties or attracting subsets of MAPs that convey specific functions to the modified microtubules. Two different mechanism can generate microtubule diversity: the expression of different α- and β-tubulin genes, referred to as tubulin isotypes, and the generation of posttranslational modifications (PTMs) on α- and β-tubulin (Figs. 1 and and2).2). Although known for several decades, deciphering how tubulin heterogeneity controls microtubule functions is still largely unchartered. This review summarizes the current advances in the field and discusses new concepts arising.Open in a separate windowFigure 1.Tubulin heterogeneity generated by PTMs. (A) Schematic representation of the distribution of different PTMs of tubulin on the α/β-tubulin dimer with respect to their position in the microtubule lattice. Acetylation (Ac), phosphorylation (P), and polyamination (Am) are found within the tubulin bodies that assemble into the microtubule lattice, whereas polyglutamylation, polyglycylation, detyrosination, and C-terminal deglutamylation take place within the C-terminal tubulin tails that project away from the lattice surface. The tubulin dimer represents TubA1A and TubB2B (Fig. 2), and modification sites for polyglutamylation and polyglycylation have been randomly chosen. (B) Chemical structure of the branched peptide formed by polyglutamylation and polyglycylation, using the γ-carboxyl groups of the modified glutamate residues as acceptor sites for the isopeptide bonds. Note that in the case of polyglutamylation, the elongation of the side chains generates classical peptide bonds (Redeker et al., 1991).Open in a separate windowFigure 2.Heterogeneity of C-terminal tails of tubulin isotypes and their PTMs. The amino acid sequences of all tubulin genes found in the human genome are indicated, starting at the last amino acid of the folded tubulin bodies. Amino acids are represented in single-letter codes and color coded according to their biochemical properties. Known sites for polyglutamylation are indicated (Eddé et al., 1990; Alexander et al., 1991; Rüdiger et al., 1992). Potential modification sites (all glutamate residues) are indicated. Known C-terminal truncation reactions of α/β-tubulin (tub) are indicated. The C-terminal tails of the yeast Saccharomyces cerevisiae are shown to illustrate the phylogenetic diversity of these domains.

Tubulin isotypes

The cloning of the first tubulin genes in the late 1970’s (Cleveland et al., 1978) revealed the existence of multiple genes coding for α- or β-tubulin (Ludueña and Banerjee, 2008) that generate subtle differences in their amino acid sequences, particularly in the C-terminal tails (Fig. 2). It was assumed that tubulin isotypes, as they were named, assemble into discrete microtubule species that carry out unique functions. This conclusion was reinforced by the observation that some isotypes are specifically expressed in specialized cells and tissues and that isotype expression changes during development (Lewis et al., 1985; Denoulet et al., 1986). These high expectations were mitigated by a subsequent study showing that all tubulin isotypes freely copolymerize into heterogeneous microtubules (Lewis et al., 1987). To date, only highly specialized microtubules, such as ciliary axonemes (Renthal et al., 1993; Raff et al., 2008), neuronal microtubules (Denoulet et al., 1986; Joshi and Cleveland, 1989), and microtubules of the marginal band of platelets (Wang et al., 1986; Schwer et al., 2001) are known to depend on some specific (β) tubulin isotypes, whereas the function of most other microtubules appears to be independent of their isotype composition.More recently, a large number of mutations in single tubulin isotypes have been linked to deleterious neurodevelopmental disorders (Keays et al., 2007; Fallet-Bianco et al., 2008; Tischfield et al., 2010; Cederquist et al., 2012; Niwa et al., 2013). Mutations of a single tubulin isotype could lead to an imbalance in the levels of tubulins as a result of a lack of incorporation of mutant isoforms into the microtubule lattice or to incorporation that perturbs the architecture or dynamics of the microtubules. The analysis of tubulin disease mutations is starting to reveal how subtle alterations of the microtubule cytoskeleton can lead to functional aberrations in cells and organisms and might provide novel insights into the roles of tubulin isotypes that have so far been considered redundant.

Tubulin PTMs

Tubulin is subject to a large range of PTMs (Fig. 1), from well-known ones, such as acetylation or phosphorylation, to others that have so far mostly been found on tubulin. Detyrosination/tyrosination, polyglutamylation, and polyglycylation, for instance, might have evolved to specifically regulate tubulin and microtubule functions, in particular in cilia and flagella, as their evolution is closely linked to these organelles. The strong link between those modifications and tubulin evolution has led to the perception that they are tubulin PTMs; however, apart from detyrosination/tyrosination, most of them have other substrates (Regnard et al., 2000; Xie et al., 2007; van Dijk et al., 2008; Rogowski et al., 2009).

Tubulin acetylation.

Tubulin acetylation was discovered on lysine 40 (K40; Fig. 1 A) of flagellar α-tubulin in Chlamydomonas reinhardtii (L’Hernault and Rosenbaum, 1985) and is generally enriched on stable microtubules in cells. Considering that K40 acetylation per se has no effect on the ultrastructure of microtubules (Howes et al., 2014), it is rather unlikely that it directly stabilizes microtubules. As a result of its localization at the inner face of microtubules (Soppina et al., 2012), K40 acetylation might rather affect the binding of microtubule inner proteins, a poorly characterized family of proteins (Nicastro et al., 2011; Linck et al., 2014). Functional experiments in cells have further suggested that K40 acetylation regulates intracellular transport by regulating the traffic of kinesin motors (Reed et al., 2006; Dompierre et al., 2007). These observations could so far not be confirmed by biophysical measurements in vitro (Walter et al., 2012; Kaul et al., 2014), suggesting that in cells, K40 acetylation might affect intracellular traffic by indirect mechanisms.Enzymes involved in K40 acetylation are HDAC6 (histone deacetylase family member 6; Hubbert et al., 2002) and Sirt2 (sirtuin type 2; North et al., 2003). Initial functional studies used overexpression, depletion, or chemical inhibition of these enzymes. These studies should be discussed with care, as both HDAC6 and Sirt2 deacetylate other substrates and have deacetylase-independent functions and chemical inhibition of HDAC6 is not entirely selective for this enzyme (Valenzuela-Fernández et al., 2008). In contrast, acetyl transferase α-Tat1 (or Mec-17; Akella et al., 2010; Shida et al., 2010) specifically acetylates α-tubulin K40 (Fig. 3), thus providing a more specific tool to investigate the functions of K40 acetylation. Knockout mice of α-Tat1 are completely void of K40-acetylated tubulin; however, they show only slight phenotypic aberrations, for instance, in their sperm flagellum (Kalebic et al., 2013). A more detailed analysis of α-Tat1 knockout mice demonstrated that absence of K40 acetylation leads to reduced contact inhibition in proliferating cells (Aguilar et al., 2014). In migrating cells, α-Tat1 is targeted to microtubules at the leading edge by clathrin-coated pits, resulting in locally restricted acetylation of those microtubules (Montagnac et al., 2013). A recent structural study of α-Tat1 demonstrated that the low catalytic rate of this enzyme, together with its localization inside the microtubules, caused acetylation to accumulate selectively in stable, long-lived microtubules (Szyk et al., 2014), thus explaining the link between this PTM and stable microtubules in cells. However, the direct cellular function of K40 acetylation on microtubules is still unclear.Open in a separate windowFigure 3.Enzymes involved in PTM of tubulin. Schematic representation of known enzymes (mammalian enzymes are shown) involved in the generation and removal of PTMs shown in Fig. 1. Note that some enzymes still remain unknown, and some modifications are irreversible. (*CCP5 preferentially removes branching points [Rogowski et al., 2010]; however, the enzyme can also hydrolyze linear glutamate chains [Berezniuk et al., 2013]).Recent discoveries have brought up the possibility that tubulin could be subject to multiple acetylation events. A whole-acetylome study identified >10 novel sites on α- and β-tubulin (Choudhary et al., 2009); however, none of these sites have been confirmed. Another acetylation event has been described at lysine 252 (K252) of β-tubulin. This modification is catalyzed by the acetyltransferase San (Fig. 3) and might regulate the assembly efficiency of microtubules as a result of its localization at the polymerization interface (Chu et al., 2011).

Tubulin detyrosination.

Most α-tubulin genes in different species encode a C-terminal tyrosine residue (Fig. 2; Valenzuela et al., 1981). This tyrosine can be enzymatically removed (Hallak et al., 1977) and religated (Fig. 3; Arce et al., 1975). Mapping of tyrosinated and detyrosinated microtubules in cells using specific antibodies (Gundersen et al., 1984; Geuens et al., 1986; Cambray-Deakin and Burgoyne, 1987a) revealed that subsets of interphase and mitotic spindle microtubules are detyrosinated (Gundersen and Bulinski, 1986). As detyrosination was mostly found on stable and long-lived microtubules, especially in neurons (Cambray-Deakin and Burgoyne, 1987b; Robson and Burgoyne, 1989; Brown et al., 1993), it was assumed that this modification promotes microtubule stability (Gundersen et al., 1987; Sherwin et al., 1987). Although a direct stabilization of the microtubule lattice was considered unlikely (Khawaja et al., 1988), it was found more recently that detyrosination protects cellular microtubules from the depolymerizing activity of kinesin-13–type motor proteins, such as KIF2 or MCAK, thus increasing their longevity (Peris et al., 2009; Sirajuddin et al., 2014).Besides kinesin-13 motors, plus end–tracking proteins with cytoskeleton-associated protein glycine-rich (CAP-Gly) domains, such as CLIP170 or p150/glued, specifically interact with tyrosinated microtubules (Peris et al., 2006; Bieling et al., 2008) via this domain (Honnappa et al., 2006). In contrast, kinesin-1 moves preferentially on detyrosinated microtubules tracks in cells (Liao and Gundersen, 1998; Kreitzer et al., 1999; Konishi and Setou, 2009). The effect of detyrosination on kinesin-1 motor behavior was recently measured in vitro, and a small but significant increase in the landing rate and processivity of the motor has been found (Kaul et al., 2014). Such subtle changes in the motor behavior could, in conjunction with other factors, such as regulatory MAPs associated with cargo transport complexes (Barlan et al., 2013), lead to a preferential use of detyrosinated microtubules by kinesin-1 in cells.Despite the early biochemical characterization of a detyrosinating activity, the carboxypeptidase catalyzing detyrosination of α-tubulin has yet to be identified (Hallak et al., 1977; Argaraña et al., 1978, 1980). In contrast, the reverse enzyme, tubulin tyrosine ligase (TTL; Fig. 3; Raybin and Flavin, 1975; Deanin and Gordon, 1976; Argaraña et al., 1980), has been purified (Schröder et al., 1985) and cloned (Ersfeld et al., 1993). TTL modifies nonpolymerized tubulin dimers exclusively. This selectivity is determined by the binding interface between the TTL and tubulin dimers (Szyk et al., 2011, 2013; Prota et al., 2013). In contrast, the so far unidentified detyrosinase acts preferentially on polymerized microtubules (Kumar and Flavin, 1981; Arce and Barra, 1983), thus modifying a select population of microtubules within cells (Gundersen et al., 1987).In most organisms, only one unique gene for TTL exists. Consequently, TTL knockout mice show a huge accumulation of detyrosinated and particularly Δ2-tubulin (see next section). TTL knockout mice die before birth (Erck et al., 2005) with major developmental defects in the nervous system that might be related to aberrant neuronal differentiation (Marcos et al., 2009). TTL is strictly tubulin specific (Prota et al., 2013), indicating that all observed defects in TTL knockout mice are directly related to the deregulation of the microtubule cytoskeleton.

Δ2-tubulin and further C-terminal modification.

A biochemical study of brain tubulin revealed that ∼35% of α-tubulin cannot be retyrosinated (Paturle et al., 1989) because of the lack of the penultimate C-terminal glutamate residue of the primary protein sequence (Fig. 2; Paturle-Lafanechère et al., 1991). This so-called Δ2-tubulin (for two C-terminal amino acids missing) cannot undergo retyrosination as a result of structural constraints within TTL (Prota et al., 2013) and thus is considered an irreversible PTM.Δ2-tubulin accumulates in long-lived microtubules of differentiated neurons, axonemes of cilia and flagella, and also in cellular microtubules that have been artificially stabilized, for instance, with taxol (Paturle-Lafanechère et al., 1994). The generation of Δ2-tubulin requires previous detyrosination of α-tubulin; thus, the levels of this PTM are indirectly regulated by the detyrosination/retyrosination cycle. This mechanistic link is particularly apparent in the TTL knockout mice, which show massive accumulation of Δ2-tubulin in all tested tissues (Erck et al., 2005). Loss of TTL and the subsequent increase of Δ2-tubulin levels were also linked to tumor growth and might contribute to the aggressiveness of the tumors by an as-yet-unknown mechanism (Lafanechère et al., 1998; Mialhe et al., 2001). To date, no specific biochemical role of Δ2-tubulin has been determined; thus, one possibility is that the modification simply locks tubulin in the detyrosinated state.The enzymes responsible for Δ2-tubulin generation are members of a family of cytosolic carboxypeptidases (CCPs; Fig. 3; Kalinina et al., 2007; Rodriguez de la Vega et al., 2007), and most of them also remove polyglutamylation from tubulin (see next section; Rogowski et al., 2010). These enzymes are also able to generate Δ3-tubulin (Fig. 1 A; Berezniuk et al., 2012), indicating that further degradation of the tubulin C-terminal tails are possible; however, the functional significance of this event is unknown.

Polyglutamylation.

Polyglutamylation is a PTM that occurs when secondary glutamate side chains are formed on γ-carboxyl groups of glutamate residues in a protein (Fig. 1, A and B). The modification was first discovered on α- and β-tubulin from the brain (Eddé et al., 1990; Alexander et al., 1991; Rüdiger et al., 1992; Mary et al., 1994) as well as on axonemal tubulin from different species (Mary et al., 1996, 1997); however, it is not restricted to tubulin (Regnard et al., 2000; van Dijk et al., 2008). Using a glutamylation-specific antibody, GT335 (Wolff et al., 1992), it was observed that tubulin glutamylation increases during neuronal differentiation (Audebert et al., 1993, 1994) and that axonemes of cilia and flagella (Fouquet et al., 1994), as well as centrioles of mammalian centrosomes (Bobinnec et al., 1998), are extensively glutamylated.Enzymes catalyzing polyglutamylation belong to the TTL-like (TTLL) family (Regnard et al., 2003; Janke et al., 2005). In mammals, nine glutamylases exist, each of them showing intrinsic preferences for modifying either α- or β-tubulin as well as for initiating or elongating glutamate chains (Fig. 3; van Dijk et al., 2007). Two of the six well-characterized TTLL glutamylases also modify nontubulin substrates (van Dijk et al., 2008).Knockout or depletion of glutamylating enzymes in different model organisms revealed an evolutionarily conserved role of glutamylation in cilia and flagella. In motile cilia, glutamylation regulates beating behavior (Janke et al., 2005; Pathak et al., 2007; Ikegami et al., 2010) via the regulation of flagellar dynein motors (Kubo et al., 2010; Suryavanshi et al., 2010). Despite the expression of multiple glutamylases in ciliated cells and tissues, depletion or knockout of single enzymes often lead to ciliary defects, particularly in motile cilia (Ikegami et al., 2010; Vogel et al., 2010; Bosch Grau et al., 2013; Lee et al., 2013), suggesting essential and nonredundant regulatory functions of these enzymes in cilia.Despite the enrichment of polyglutamylation in neuronal microtubules (Audebert et al., 1993, 1994), knockout of TTLL1, the major polyglutamylase in brain (Janke et al., 2005), did not show obvious neuronal defects in mice (Ikegami et al., 2010; Vogel et al., 2010). This suggests a tolerance of neuronal microtubules to variations in polyglutamylation.Deglutamylases, the enzymes that reverse polyglutamylation, were identified within a novel family of CCPs (Kimura et al., 2010; Rogowski et al., 2010). So far, three out of six mammalian CCPs have been shown to cleave C-terminal glutamate residues, thus catalyzing both the reversal of polyglutamylation and the removal of gene-encoded glutamates from the C termini of proteins (Fig. 3). The hydrolysis of gene-encoded glutamate residues is not restricted to tubulin, in which it generates Δ2- and Δ3-tubulin, but has also been reported for other proteins such as myosin light chain kinase (Rusconi et al., 1997; Rogowski et al., 2010). One enzyme of the CCP family, CCP5, preferentially removes branching points generated by glutamylation, thus allowing the complete reversal of the polyglutamylation modification (Kimura et al., 2010; Rogowski et al., 2010). However, CCP5 can also hydrolyze C-terminal glutamate residues from linear peptide chains similar to other members of the CCP family (Berezniuk et al., 2013).CCP1 is mutated in a well-established mouse model for neurodegeneration, the pcd (Purkinje cell degeneration) mouse (Mullen et al., 1976; Greer and Shepherd, 1982; Fernandez-Gonzalez et al., 2002). The absence of a key deglutamylase leads to strong hyperglutamylation in brain regions that undergo degeneration, such as the cerebellum and the olfactory bulb (Rogowski et al., 2010). When glutamylation levels were rebalanced by depletion or knockout of the major brain polyglutamylase TTLL1 (Rogowski et al., 2010; Berezniuk et al., 2012), Purkinje cells survived. Although the molecular mechanisms of hyperglutamylation-induced degeneration remain to be elucidated, perturbation of neuronal transport, as well as changes in the dynamics and stability of microtubules, is expected to be induced by hyperglutamylation. Increased polyglutamylation levels have been shown to affect kinesin-1–mediated transport in cultured neurons (Maas et al., 2009), and the turnover of microtubules can also be regulated by polyglutamylation via the activation of microtubule-severing enzymes such as spastin (Lacroix et al., 2010).Subtle differences in polyglutamylation can be seen on diverse microtubules in different cell types. The functions of these modifications remain to be studied; however, its wide distribution strengthens the idea that it could be involved in fine-tuning a range of microtubule functions.

Polyglycylation.

Tubulin polyglycylation or glycylation, like polyglutamylation, generates side chains of glycine residues within the C-terminal tails of α- and β-tubulin (Fig. 1, A and B). The modification sites of glycylation are considered to be principally the same as for glutamylation, and indeed, both PTMs have been shown to be interdependent in cells (Rogowski et al., 2009; Wloga et al., 2009). Initially discovered on Paramecium tetraurelia tubulin (Redeker et al., 1994), glycylation has been extensively studied using two antibodies, TAP952 and AXO49 (Bressac et al., 1995; Levilliers et al., 1995; Bré et al., 1996). In contrast to polyglutamylation, glycylation is restricted to cilia and flagella in most organisms analyzed so far.Glycylating enzymes are also members of the TTLL family, and homologues of these enzymes have so far been found in all organisms with proven glycylation of ciliary axonemes (Rogowski et al., 2009; Wloga et al., 2009). In mammals, initiating (TTLL3 and TTLL8) and elongating (TTLL10) glycylases work together to generate polyglycylation (Fig. 3). In contrast, the two TTLL3 orthologues from Drosophila melanogaster can both initiate and elongate glycine side chains (Rogowski et al., 2009).In mice, motile ependymal cilia in brain ventricles acquire monoglycylation upon maturation, whereas polyglycylation is observed only after several weeks (Bosch Grau et al., 2013). Sperm flagella, in contrast, acquire long glycine chains much faster, suggesting that the extent of polyglycylation could correlate with the length of the axonemes (Rogowski et al., 2009). Depletion of glycylases in mice (ependymal cilia; Bosch Grau et al., 2013), zebrafish (Wloga et al., 2009; Pathak et al., 2011), Tetrahymena thermophila (Wloga et al., 2009), and D. melanogaster (Rogowski et al., 2009) consistently led to ciliary disassembly or severe ciliary defects. How glycylation regulates microtubule functions remains unknown; however, the observation that glycylation-depleted axonemes disassemble after initial assembly (Rogowski et al., 2009; Bosch Grau et al., 2013) suggests a role of this PTM in stabilizing axonemal microtubules. Strikingly, human TTLL10 is enzymatically inactive; thus, humans have lost the ability to elongate glycine side chains (Rogowski et al., 2009). This suggests that the elongation of the glycine side chains is not an essential aspect of the function of this otherwise critical tubulin PTM.

Other tubulin PTMs.

Several other PTMs have been found on tubulin. Early studies identified tubulin phosphorylation (Eipper, 1974; Gard and Kirschner, 1985; Díaz-Nido et al., 1990); however, no specific functions were found. The perhaps best-studied phosphorylation event on tubulin takes place at serine S172 of β-tubulin (Fig. 1 A), is catalyzed by the Cdk1 (Fig. 3), and might regulate microtubule dynamics during cell division (Fourest-Lieuvin et al., 2006; Caudron et al., 2010). Tubulin can be also modified by the spleen tyrosine kinase Syk (Fig. 3; Peters et al., 1996), which might play a role in immune cells (Faruki et al., 2000; Sulimenko et al., 2006) and cell division (Zyss et al., 2005; Sulimenko et al., 2006).Polyamination has recently been discovered on brain tubulin (Song et al., 2013), after having been overlooked for many years as a result of the low solubility of polyaminated tubulin. Among several glutamine residues of α- and β-tubulin that can be polyaminated, Q15 of β-tubulin is considered the primary modification site (Fig. 1 A). Polyamination is catalyzed by transglutaminases (Fig. 3), which modify free tubulin as well as microtubules in an irreversible manner, and most likely contribute to the stabilization of microtubules (Song et al., 2013).Tubulin was also reported to be palmitoylated (Caron, 1997; Ozols and Caron, 1997; Caron et al., 2001), ubiquitinated (Ren et al., 2003; Huang et al., 2009; Xu et al., 2010), glycosylated (Walgren et al., 2003; Ji et al., 2011), arginylated (Wong et al., 2007), methylated (Xiao et al., 2010), and sumoylated (Rosas-Acosta et al., 2005). These PTMs have mostly been reported without follow-up studies, and some of them are only found in specific cell types or organisms and/or under specific metabolic conditions. Further studies will be necessary to gain insights into their potential roles for the regulation of the microtubule cytoskeleton.

Current advances and future perspectives

The molecular heterogeneity of microtubules, generated by the expression of different tubulin isotypes and by the PTM of tubulin has fascinated the scientific community for ∼40 years. Although many important advances have been made in the past decade, the dissection of the molecular mechanisms and a comprehensive understanding of the biological functions of tubulin isotypes and PTMs will be a challenging field of research in the near future.

Direct measurements of the impact of tubulin heterogeneity.

The most direct and reliable type of experiments to determine the impact of tubulin heterogeneity on microtubule behavior are in vitro measurements with purified proteins. However, most biophysical work on microtubules has been performed with tubulin purified from bovine, ovine, or porcine brains, which can be obtained in large quantities and with a high degree of purity and activity (Vallee, 1986; Castoldi and Popov, 2003). Brain tubulin is a mixture of different tubulin isotypes and is heavily posttranslationally modified and thus inept for investigating the functions of tubulin heterogeneity (Denoulet et al., 1986; Cambray-Deakin and Burgoyne, 1987b; Paturle et al., 1989; Eddé et al., 1990). Thus, pure, recombinant tubulin will be essential to dissect the roles of different tubulin isoforms and PTMs.Attempts to produce recombinant, functional α- and β-tubulin in bacteria have failed so far (Yaffe et al., 1988), most likely because of the absence of the extensive tubulin-specific folding machinery (Yaffe et al., 1992; Gao et al., 1993; Tian et al., 1996; Vainberg et al., 1998) in prokaryotes. An alternative source of tubulin with less isotype heterogeneity and with almost no PTMs is endogenous tubulin from cell lines such as HeLa, which in the past has been purified using a range of biochemical procedures (Bulinski and Borisy, 1979; Weatherbee et al., 1980; Farrell, 1982; Newton et al., 2002; Fourest-Lieuvin, 2006). Such tubulin can be further modified with tubulin-modifying enzymes, such as polyglutamylases, either by expressing those enzymes in the cells before tubulin purification (Lacroix and Janke, 2011) or in vitro with purified enzymes (Vemu et al., 2014). Despite some technical limitations of these methods, HeLa tubulin modified in cells has been successfully used in an in vitro study on the role of polyglutamylation in microtubule severing (Lacroix et al., 2010).Naturally occurring variants of tubulin isotypes and PTMs can be purified from different organisms, organs, or cell types, but obviously, only some combinations of tubulin isotypes and PTMs can be obtained by this approach. The recent development of an affinity purification method using the microtubule-binding TOG (tumor overexpressed gene) domain of yeast Stu2p has brought a new twist to this approach, as it allows purifying small amounts of tubulin from any cell type or tissue (Widlund et al., 2012).The absence of tubulin heterogeneity in yeast has made budding and fission yeast potential expression systems for recombinant, PTM-free tubulin (Katsuki et al., 2009; Drummond et al., 2011; Johnson et al., 2011). However, the expression of mammalian tubulin in this system has remained impossible. This problem was then partially circumvented by expressing tubulin chimeras that consist of a yeast tubulin body fused to mammalian C-terminal tubulin tails, thus mimicking different tubulin isotypes (Sirajuddin et al., 2014). Moreover, detyrosination can be generated by deleting the key C-terminal residue from endogenous or chimeric α-tubulin (Badin-Larçon et al., 2004), and polyglutamylation is generated by chemically coupling glutamate side chains to specifically engineered tubulin chimeras (Sirajuddin et al., 2014). These approaches allowed the first direct measurements of the impact of tubulin isotypes and PTMs on the behavior of molecular motors in vitro (Sirajuddin et al., 2014) and the analysis of the effects of tubulin heterogeneity on microtubule behavior and interactions inside the yeast cell (Badin-Larçon et al., 2004; Aiken et al., 2014).Currently, the most promising development has been the successful purification of fully functional recombinant tubulin from the baculovirus expression system (Minoura et al., 2013). Using this system, defined α/β-tubulin dimers can be obtained using two different epitope tags on α- and β-tubulin, respectively. Although these epitope tags are essential for separating recombinant from the endogenous tubulin, they could also affect tubulin assembly or microtubule–MAP interactions. Thus, future developments should focus on eliminating these tags.Current efforts have brought the possibility of producing recombinant tubulin into reach. Further improvement and standardization of these methods will certainly provide a breakthrough in understanding the mechanisms by which tubulin heterogeneity contributes to microtubule functions.

Complexity of tubulin—understanding the regulatory principles.

The diversity of tubulin genes (isotypes) and the complexity of tubulin PTMs have led to the proposal of the term “tubulin code” (Verhey and Gaertig, 2007; Wehenkel and Janke, 2014), in analogy to the previously coined histone code (Jenuwein and Allis, 2001). Tubulin molecules consist of a highly structured and thus evolutionarily conserved tubulin body and the unstructured and less conserved C-terminal tails (Nogales et al., 1998). As PTMs and sequence variations within the tubulin body are expected to affect the conserved tubulin fold and therefore the properties of the microtubule lattice, they are not likely to be involved in generating the tubulin code. In contrast, modulations of the C-terminal tails could encode signals on the microtubule surface without perturbing basic microtubule functions and properties (Figs. 1 A and and4).4). Indeed, the highest degree of gene-encoded diversity (Fig. 2) and the highest density and complexity of PTMs (Fig. 1) are found within these tail domains.Open in a separate windowFigure 4.Molecular components of the tubulin code. Schematic representation of potential coding elements that could generate specific signals for the tubulin code. (A) The length of the C-terminal tails of different tubulin isotypes differ significantly (Fig. 2) and could have an impact on the interactions between microtubules and MAPs. (B) Tubulin C-terminal tails are rich in charged amino acid residues. The distribution of these residues and local densities of charges could influence the electrostatic interactions with the tails and the readers. (C) Although each glutamate residue within the C-terminal tails could be considered a potential modification site, only some sites have been found highly occupied in tubulin purifications from native sources. This indicates selectivity of the modification reactions, which can participate in the generation of specific modification patterns (see D). Modification sites might be distinguished by their neighboring amino acid residues, which could create specific modification epitopes. (D) As a result of the large number of modification sites and the variability of side chains, a large variety of modification patterns could be generated within a single C-terminal tail of tubulin. (E) Modification patterns as shown in D can be distinct between α- and β-tubulin. These modification patterns could be differentially distributed at the surface of the microtubule lattice, thus generating a higher-order patterning. Tub, tubulin. For color coding, see Fig. 2.Considering the number of tubulin isotypes plus all potential combinations of PTMs (e.g., each glutamate residue within the C-terminal tubulin tail could be modified by either polyglutamylation or polyglycylation, each of them generating side chains of different lengths; Fig. 4), the number of distinct signals generated by the potential tubulin code would be huge. However, as many of these potential signals represent chemical structures that are similar and might not be reliably distinguished by readout mechanisms, it is possible that the tubulin code generates probabilistic signals. In this scenario, biochemically similar modifications would have similar functional readouts, and marginal differences between those signals would only bias biological processes but not determine them. This stands in contrast to the concept of the histone code, in which precise patterns of different PTMs on the histone proteins encode distinct biological signals.The concept of probabilistic signaling is already inscribed in the machinery that generates the tubulin code. Polyglutamylases and polyglycylases from the TTLL family have preferential activities for either α- or β-tubulin and for generating different lengths of the branched glutamate or glycine chains. Although under conditions of low enzyme concentrations, as found in most cells and tissues, the enzymes seem to selectively generate their preferential type of PTM, higher enzyme concentrations induce a more promiscuous behavior, leading, for instance, to a loss of selectivity for α- or β-tubulin (van Dijk et al., 2007). Similarly, the modifying enzymes might prefer certain modification sites within the C-terminal tails of tubulin but might be equally able to modify other sites, which could be locally regulated in cells. For example, β-tubulin isotypes isolated from mammalian brain were initially found to be glutamylated on single residues (Alexander et al., 1991; Rüdiger et al., 1992), which in the light of the comparably low sensitivity of mass spectrometry at the time might rather indicate a preferential than a unique modification of these sites. Nevertheless, the neuron-specific polyglutamylase for β-tubulin TTLL7 (Ikegami et al., 2006) can incorporate glutamate onto many more modification sites of β-tubulin in vitro (Mukai et al., 2009), which clearly indicates that not all of the possible modification events take place under physiological conditions.Several examples supporting a probabilistic signaling mode of the tubulin code are found in the recent literature. In T. thermophila, a ciliate without tubulin isotype diversity (Gaertig et al., 1993) but with a huge repertoire of tubulin PTMs and tubulin-modifying enzymes (Janke et al., 2005), tubulin can be easily mutagenized to experimentally eliminate sites for PTMs. Mutagenesis of the most commonly occupied glutamylation/glycylation sites within the β-tubulin tails did not generate a clear decrease of glycylation levels nor did it cause obvious phenotypic alterations. This indicates that the modifying enzymes can deviate toward alternative modification sites and that similar PTMs on different sites can compensate the functions of the mutated site. However, when all of the key modification sites were mutated, glycylation became prominently decreased, which led to severe phenotypes, including lethality (Xia et al., 2000). Most strikingly, these phenotypes could be recovered by replacing the C-terminal tail of α-tubulin with the nonmutated β-tubulin tail. This α–β-tubulin chimera became overglycylated and functionally compensated for the absence of modification sites on β-tubulin. The conclusion of this study is that PTM- and isotype-generated signals can fulfill a biological function within a certain range of tolerance.But how efficient is such compensation? The answer can be found in a variety of already described deletion mutants for tubulin-modifying enzymes in different model organisms. Most single-gene knockouts for TTLL genes (glutamylases or glycylases) did not result in prominent phenotypic alterations in mice, even for enzymes that are ubiquitously expressed. Only some highly specialized microtubule structures show functional aberrations upon the deletion of a single enzyme. These “tips of the iceberg” are usually the motile cilia and sperm flagella, which carry very high levels of polyglutamylation and polyglycylation (Bré et al., 1996; Kann et al., 1998; Rogowski et al., 2009). It thus appears that some microtubules are essentially dependent on the generation of specific PTM patterns, whereas others can tolerate changes and appear to function normally. How “normal” these functions are remains to be investigated in future studies. It is possible that defects are subtle and thus overlooked but could become functionally important under specific conditions.A tubulin code also requires readout mechanisms. The most likely “readers” of the tubulin code are MAPs and molecular motors. Considering the probabilistic signaling hypothesis, the expected effects of the signals would be in most cases rather gradual changes, for instance, to fine-tune molecular motor traffic and/or to bias motors toward defined microtubule tracks but not to obliterate motor activity or MAP binding to microtubules. An in vitro study using recombinant tubulin chimeras purified from yeast confirmed this notion (Sirajuddin et al., 2014). By analyzing which elements of the tubulin code can regulate the velocity and processivity of the molecular motors kinesin and dynein, these researchers found that the C-terminal tails of α- and β-tubulin differentially influence the kinetic parameters of the tested motors; however, the modulation was rather modest. One of their striking observations was that a single lysine residue, present in the C-terminal tails of two β-tubulin isotypes (Figs. 2 and and4),4), significantly affected motor traffic and that this effect can be counterbalanced by polyglutamylation. These observations are the first in vitro evidence for the interdependence of different elements of the tubulin code and provide another indication for its probabilistic mode of signaling.

Future directions.

One of the greatest technological challenges to understanding the function of the tubulin code is to detect and interpret subtle and complex regulatory events generated by this code. It will thus be instrumental to further develop tools to better distinguish graded changes in PTM levels on microtubules in cells and tissues (Magiera and Janke, 2013) and to reliably measure subtle modulations of microtubule behavior in reconstituted systems.The current advances in the field and especially the availability of whole-organism models, as well as first insights into the pathological role of tubulin mutations (Tischfield et al., 2011), are about to transform our way of thinking about the regulation of microtubule cytoskeleton. Tubulin heterogeneity generates complex probabilistic signals that cannot be clearly attributed to single biological functions in most cases and that are not essential for most cellular processes. Nevertheless, it has been conserved throughout evolution of eukaryotes and can hardly be dismissed as not important. To understand the functional implications of these processes, we might be forced to reconsider how we define biologically important events and how we measure events that might encode probabilistic signals. The answers to these questions could provide novel insights into how complex systems, such as cells and organisms, are sustained throughout difficult and challenging life cycles, resist to environmental stress and diseases, and have the flexibility needed to succeed in evolution.  相似文献   

6.
7.
8.
9.
Malignant melanoma possesses one of the highest metastatic potentials among human cancers. Acquisition of invasive phenotypes is a prerequisite for melanoma metastases. Elucidation of the molecular mechanisms underlying melanoma invasion will greatly enhance the design of novel agents for melanoma therapeutic intervention. Here, we report that guanosine monophosphate synthase (GMPS), an enzyme required for the de novo biosynthesis of GMP, has a major role in invasion and tumorigenicity of cells derived from either BRAFV600E or NRASQ61R human metastatic melanomas. Moreover, GMPS levels are increased in metastatic human melanoma specimens compared with primary melanomas arguing that GMPS is an attractive candidate for anti-melanoma therapy. Accordingly, for the first time we demonstrate that angustmycin A, a nucleoside-analog inhibitor of GMPS produced by Streptomyces hygroscopius efficiently suppresses melanoma cell invasion in vitro and tumorigenicity in immunocompromised mice. Our data identify GMPS as a powerful driver of melanoma cell invasion and warrant further investigation of angustmycin A as a novel anti-melanoma agent.Malignant melanoma is one of the most aggressive types of human cancers. Its ability to metastasize in combination with resistance to conventional anticancer chemotherapy makes melanoma extremely difficult to cure, and the median survival of patients with metastatic melanoma is 8.5 months.1, 2, 3 A better understanding of the biology behind melanoma aggressiveness is imperative to facilitate the development of novel anti-melanoma strategies.Melanoma and other cancers cells have been shown to strongly rely on de novo nucleotide biosynthesis4, 5 and often overexpress several biosynthetic enzymes involved in these pathways.6, 7, 8, 9 Recently, we have identified a fundamental connection between melanoma invasion and biosynthesis of guanylates,8 suggesting that distortion of the guanylate metabolism facilitates melanoma progression.Guanosine monophosphate reductase (GMPR) reduces GMP to one of its precursors, inosine monophosphate (IMP), and depletes intracellular GTP pools (Figure 1a). We have recently demonstrated that GMPR suppresses melanoma cell invasion and growth of human melanoma cell xenografts. These findings tightly linked guanylate production to the invasive potential of melanoma cells.8Open in a separate windowFigure 1GMPS contributes to the invasive capability of melanoma cells. (a) Simplified schematic of the metabolic pathway for guanylates production. (b) SK-Mel-103 and SK-Mel-28 cells were transduced with a control vector or two independent shRNAs to GMPS and tested for invasion through Matrigel (left panel). Where indicated, cells were incubated with 100 μM guanosine for 24 h before the assay and guanosine supplementation was maintained throughout the experimental procedure. The data represent the average ± S.E.M. of at least two independent experiments. GMPS suppression was verified by immunoblotting (right panel). (c) Cells transduced as in (a) were plated on coverslips coated with FITC-conjugated gelatin. After 16 h cells were fixed with 4% PFA and stained for actin (rhodamine-conjugated phallodin) and nuclei (Hoechst). Where indicated, cells were incubated with 100 μM guanosine for 24 h before the assay and guanosine supplementation was maintained throughout the experimental procedure. At least 25 cells/sample were imaged to assess the number of cells with gelatin degradation. The data represent the average ± S.E.M. of two independent experiments. *P<0.05, **P<0.001 compared with control; #P<0.05, ##P<0.001 compared with untreated cells. Statistics performed with Student''s t-Test. See also Supplementary Figure S1Of the several enzymes involved in guanylate biosynthesis, inositol monophosphate dehydrogenases 1 and 2 (IMPDH-1, -2), functional antagonists of GMPR (Figure 1a), have been targeted clinically with several drugs including the most specific one, mycophenolic acid (MPA) and its salt, mycophenolate mofetil (MMF).10, 11, 12, 13 Nonetheless, prior studies demonstrated that MPA possesses poor anti-tumor activity,14, 15 and it is primarily used as an immunosuppressing agent in organ transplantation.10, 11, 12GMP synthase (GMPS) is the other functional antagonist of GMPR. GMPS catalyzes the amination of xanitol monophosphate (XMP) to GMP to promote GTP synthesis (Figure 1a).16, 17 Most of the studies on GMPS have been performed in bacteria, yeast, and insects, where GMPS has been shown to have a key role in sporulation, pathogenicity, and axon guidance, respectively.18, 19, 20 Mammalian GMPS has been the subject of several studies addressing its unconventional (GMP-unrelated) roles in the regulation of activity of ubiquitin-specific protease 7 (USP7).21, 22, 23, 24 However, because of the newly revealed importance of guanylate metabolism in control of melanoma cell invasion and tumorigenicity,8 GMPS emerges as an attractive target for anti-cancer therapy.In the late 1950s, a specific inhibitor of bacterial GMPS, angustmycin A (also known as decoyinine), has been isolated from Streptomyces hygroscopius as a potential antibiotic with sporulation-inducing activity in Bacillus subtilis.25, 26, 27, 28, 29 Its anti-tumor activity has never been experimentally explored. In the current study, we investigated the role of GMPS in regulation of melanoma invasion and tumorigenicity, and explored the possibility of targeting GMPS by angustmycin A as a novel anti-melanoma strategy.  相似文献   

10.
11.
12.
13.
Nonhuman primates are the experimental animals of choice for the study of many human diseases. As such, it is important to understand that endemic viruses of primates can potentially affect the design, methods, and results of biomedical studies designed to model human disease. Here we review the viruses known to be endemic in squirrel monkeys (Saimiri spp.). The pathogenic potential of these viruses in squirrel monkeys that undergo experimental manipulation remains largely unexplored but may have implications regarding the use of squirrel monkeys in biomedical research.Abbreviations: HTLV1, human T-cell leukemia virus type 1; HVS, herpesvirus saimiri; IPF, idiopathic pulmonary fibrosis; SaHV, Saimiriine herpesvirus; SFV, simian foamy virus; SM-CMV, squirrel monkey cytomegalovirus; SMPyV, squirrel monkey polyomavirus; SMRV, squirrel monkey retrovirusThe similarity between the nonhuman primate and human immune systems is a key advantage in the use of nonhuman primates compared with other mammalian models of human disease.13,71,88,94,103,113,125 In addition, the diversity of environmental and infectious disease agents encountered by primates is similar to that of humans, providing nonhuman primates a comparable level of biologic complexity.1 Old World primates, such as macaques and baboons, and New World primates, including squirrel monkeys and marmosets, are commonly used in biomedical research. Squirrel monkeys (Saimiri spp.) are neotropical primates native to the forests of Central and South America. Of the 7 species of squirrel monkey, 3 (S. oerstedii, S. vanzolinii, and S. ustus) are classified as endangered, vulnerable to extinction in the wild, or near threatened, whereas the remaining 4 (S. boliviensis, S. cassiquiarensis, S. macrodon, and S. sciureus) are not endangered, although the S. cassiquiarensis albigena subspecies is near threatened52,81 (Figure 1). In South America, where squirrel monkeys are indigenous, breeding colonies of S. sciureus have been maintained at the Pasteur Institute in French Guiana and at the Oswaldo Cruz Foundation in Brazil.7,12 In the United States, the Squirrel Monkey Breeding and Research Resource, an NIH-sponsored national research resource, maintains breeding colonies for S. boliviensis boliviensis, S. sciureus sciureus, and S. boliviensis peruviensis.Open in a separate windowFigure 1.Taxonomy of Saimiri species with associated IUCN designations.52,81Squirrel monkeys adapt easily to laboratory housing and can be housed in smaller spaces than can Old World primates.1 Unlike when working with Old World primates, particularly macaques, no additional personnel protective equipment is necessary when working with squirrel monkeys beyond that recommended for working with other New World primates.92 Their small size, combined with the reduced need for personnel protective equipment during handling, make squirrel monkeys attractive species for model development and for studies of viral pathogenesis, which cost approximately 30% to 40% less than comparable studies in macaques.1 The likelihood of zoonotic transmission of infectious pathogens is considerably less than that associated with macaques and the risk of Macacine herpesvirus 1 (B virus) is nonexistent, given that neotropical primates do not harbor this lethal virus.1 These factors are increasingly important in the current climate of limited grant funding for biomedical research and emphasis on safety for laboratory personnel. The limited availability of immunologic reagents with specificity for neotropical primates has hindered broader use of squirrel monkeys in biomedical research, compared with that of the more commonly used Old World primates. In addition, the small size of neotropical primates limits the volume of blood that can be collected at any one time. To abrogate these limitations, the NIH Nonhuman Primate Reagent Resource (www.nhpreagents.org) provides an increasing repertoire of agents that have been characterized for immunologic studies of neotropical primates.89Squirrel monkeys are used in numerous aspects of biomedical research, including studies of viral persistence, neuroendocrinology, infectious diseases, cancer treatments, vaccine development, gene expression, and reproductive physiology.117 The similarity between the squirrel monkey immune system and that of humans means that, as with macaques, there is a high likelihood that research outcomes will recapitulate what occurs in human diseases.13,71,87,94 This is particularly true for the study of several notable infectious diseases, including malaria, Creutzfeldt–Jakob disease, and human T-cell leukemia virus type 1 (HTLV1) infection.19,56,128 For these diseases, squirrel monkeys are the model system of choice for studying pathogenesis, experimental treatments, and strategies for prevention.Squirrel monkeys are recognized as some of the most susceptible nonhuman primate species for the experimental transmission of Creutzfeldt–Jakob disease and other transmissible spongiform encephalopathies that cause chronic wasting disease.11,72,98,130 The experimental infection of squirrel monkeys with HTLV1 has led to their use in vaccine development and chemotherapy research directed against HTLV1.44,57,58,82 In addition, squirrel monkeys are an important model for studying the immunology of malaria and for testing vaccines against several Plasmodium species.19,20,68,114 Furthermore, squirrel monkeys have been used in pharmacologic research to raise HDL levels to prevent atherosclerosis and reduce the risk of coronary heart disease.6 As the use of squirrel monkeys increases, especially for infectious disease research, accurate information about the endemic viral infections of squirrel monkeys is needed because of the potential for zoonotic transfer of these viruses to humans (and vice versa) and to understand the potential influence these agents may have on research involving other infectious pathogens diseases and immunosuppressive drugs.  相似文献   

14.
15.
Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.The association of large numbers of cells in tightly organized epithelial layers is a unique and defining feature of Metazoa. Although classical studies of development once labeled distinct embryonic regions as territories, fields, layers, placodes, and primordia, we now know many of these structures to be primarily constructed from epithelial sheets. Epithelial structure and function are critically dependent on cell polarization, which is coupled to the targeted assembly of adhesive junctions along the apicolateral membranes of adjacent cells (Tepass et al., 2001; Cavey and Lecuit, 2009). In brief, the plasma membrane of epithelial cells is polarized into apical and basolateral domains, each enriched with distinct lipid and protein components (Fig. 1; Rodriguez-Boulan et al., 2005; St Johnston and Ahringer, 2010). At the molecular level, E-cadherins are the major class of adhesion proteins that establish cell–cell connections through homophilic interaction across cell membranes (Takeichi, 1991, 2011; Halbleib and Nelson, 2006; Harris and Tepass, 2010). Whereas E-cadherin is apically enriched in invertebrate epithelia, it is localized along the lateral domain of vertebrate epithelial cells. In both cases, E-cadherin interacts with cytoplasmic actin filaments via the catenin class of adaptor proteins, thus coupling intercellular adhesive contacts to the cytoskeleton (Cavey and Lecuit, 2009; Harris and Tepass, 2010; Gomez et al., 2011). Within this framework, the maintenance of both polarity and cell–cell adhesion are essential for epithelial barrier function and tissue architecture during growth and morphogenesis (Papusheva and Heisenberg, 2010; Guillot and Lecuit, 2013b).Open in a separate windowFigure 1.Architectural implications of orthogonal and planar spindle orientations during epithelial cell division. (A) Programmed orthogonal orientation of the mitotic spindle can promote epithelial stratification, although the remodeling of adhesion and polarity complexes during this process remains an important area for further study. (B) Planar spindle orientation is coordinated with the overall cell polarity machinery and thus facilitates conservation of monolayer organization during rapid cell proliferation.During development, epithelia expand by the combined effects of cell growth (increase in cell size) and cell division (increase in cell numbers). Division events are typically oriented either parallel or orthogonal to the plane of the layer and less frequently at oblique angles (Gillies and Cabernard, 2011). When cells divide orthogonally (perpendicular to the plane of the epithelium), the two daughters will be at least initially nonequivalent with respect to position within the cell layer (Fig. 1 A). Under normal conditions, such programmed orthogonal divisions can be used to effect asymmetric segregation of cell fates or to establish distinct cell types, such as in the developing cortex (Fietz et al., 2010; Hansen et al., 2010) or during morphogenesis of stratified epithelia (Lechler and Fuchs, 2005; Williams et al., 2011). Conversely, when cells divide parallel to the plane of the epithelium (planar orientation; Fig. 1 B), both daughter cells are equivalent with respect to mother cell polarity and tightly integrated in the growing monolayer (Morin and Bellaïche, 2011).During planar division, epithelial cells typically round up, constrict in the middle to form the cytokinetic furrow, and divide symmetrically with respect to the apicobasal axis to produce two equal daughter cells. These daughters construct new cell–cell junctions at their nascent interface, thus integrating into the monolayer (Fig. 2, A–G). Although the intricate relationship between cell polarity and cell division has been explored for many years in the context of asymmetric cell division (Rhyu and Knoblich, 1995; Siller and Doe, 2009; Williams and Fuchs, 2013), recent studies have also begun to explore how epithelia maintain their morphology, integrity, and barrier function during continuous rounds of planar cell division and junction assembly. In this review, we highlight recent findings that provide new insights into the problem of symmetric planar cell division in diverse polarized epithelia, with a focus on two crucial mitotic events: (1) the orientation of cell division and (2) the formation of new cell junctions.Open in a separate windowFigure 2.Progression of planar cell division in an epithelial monolayer. Apical cross section (xy, top row) and longitudinal (xz, bottom row) view of a dividing cell (red). (A) At the level of apical junctions, cells are packed in a polygonal cell arrangement during interphase. (B) In prophase, the dividing nucleus begins to translocate apically as the cell rounds up and maintains a thin basal projection enriched with nonmuscle myosin II and actin (light blue). Notably, this type of nuclear migration is typically observed in pseudostratified columnar epithelia and does not occur in cuboidal and squamous epithelial tissues. (C) Localized molecular landmarks (apical complexes marked as gray bars on cell sides) direct orientation of the mitotic spindle to the plane of the epithelium (arrows). (D) Within the plane of the cell layer, the spindle can be further oriented (arrows) in response to molecular cues, global tissue tension, and local cell geometry. (E and F) After chromosome segregation during anaphase, the cell constricts in the middle and cleaves orthogonal to the plane of the monolayer. (G) After cytokinesis, daughter nuclei move basally and daughter cells form new junctions at their nascent interface (white) while elongating along the apicobasal axis.

Mitotic spindle position and orientation in epithelial cells

Planar orientation of epithelial cell division requires coordinated interaction between the cell polarization machinery and the mitotic spindle itself (Morin and Bellaïche, 2011). In animal cells, the spindle is organized by two symmetrically positioned poles or centrosomes, which nucleate three forms of microtubules (Tanaka, 2010): kinetochore microtubules that attach to the chromosomes, polar microtubules that overlap in an antiparallel fashion over the midplane, and astral microtubules that extend to the cell cortex, which is the actin-rich layer beneath the cell membrane (Lancaster and Baum, 2014). Work in Drosophila melanogaster and vertebrates reveals that at least three factors influence the orientation of this spindle machinery with respect to polarized epithelial architecture: cytoskeletal forces, localized cortical cues, and tissue tension.

Cytoskeletal forces position mitotic nuclei near the apical cell membrane.

In columnar and pseudostratified epithelia where cells elongate along their apicobasal axes, mitotic events are typically restricted to the apical domain of the epithelium (corresponding to the apical membrane of each cell; Fig. 2, C–F). How does the mitotic nucleus achieve the correct apical position? In Drosophila wing discs and zebrafish neuroepithelia, mitotic nuclei and the bulk of the cell cytoplasm are driven apically by actomyosin-dependent cortical contractility at prophase entry (Norden et al., 2009; Leung et al., 2011; Meyer et al., 2011). These events are fundamentally similar to mitotic cell rounding in tissue culture cells (Kunda and Baum, 2009; Lancaster et al., 2013; Lancaster and Baum, 2014). In many epithelia, as the cell rounds up and the nucleus translocates apically, a thin actin-rich projection maintains contact with the basal lamina (Fig. 2, B and C). It remains poorly understood how this structure behaves during cleavage and whether this basal process plays any role in the correct reintegration of the postmitotic daughter cells into the monolayer. Although actomyosin may be the primary driver of apical rounding in many cases, evidence also supports a role for microtubule-based mechanisms in the positioning of premitotic nuclei. In chicken neural tube and mouse cerebral cortex, nuclei migrate apically on microtubules before actomyosin-dependent rounding (Spear and Erickson, 2012a). Centrosomes provide directionality to the microtubules on which the nucleus migrates and organize the spindle once the mitotic chromatin reaches the apical domain (Peyre et al., 2011; Spear and Erickson, 2012a; Nakajima et al., 2013). Collectively, current evidence suggests that both actomyosin- and microtubule-dependent forces conspire to effect mitotic nuclear translocation in a highly context- and species-specific manner. One possibility is that the varying physical dimensions of epithelial cells require varying mechanisms for apical nuclear translocation. For example, highly elongated radial glial cells require active transport of the nucleus on microtubules before mitotic rounding, whereas cortical actomyosin contractility may be sufficient in less elongated cells (Spear and Erickson, 2012b). A major outstanding problem is how cortical contractility triggers cell rounding that is polarized along the apicobasal axis of the cell. Whereas centrosomes function as an apical landmark for nuclei moving on microtubules, it remains unclear what provides the directionality for the basal-to-apical actomyosin contraction. One hypothesis is that certain proteins can restrict the localization of nonmuscle myosin II at the basal domain of epithelial cells. The microcephaly protein Asp interacts with myosin II and regulates its polarized localization along the apicobasal axis in the fly optic lobe neuroepithelium. In asp mutant flies, myosin II is enriched apically instead of basally. Many dividing nuclei fail to reach the apical domain and are thus broadly distributed along the apicobasal axis of the epithelium, leading to a disorganized tissue (Rujano et al., 2013). Interestingly, Asp also interacts with microtubules, associates with spindle poles, and is essential for positioning the spindle in fly and vertebrate epithelia (Saunders et al., 1997; do Carmo Avides and Glover, 1999; Wakefield et al., 2001; Fish et al., 2006). Elucidating the function of proteins such as Asp at the interface of microtubules and actomyosin will be essential to our understanding of how the cytoskeleton drives apical mitotic rounding.

Localized molecular landmarks direct planar spindle orientation.

In most animal cells, the mitotic spindle is anchored to the cell cortex by astral microtubules (Fig. 2, C–E; Théry and Bornens, 2006). Translocation of the dynein–dynactin motor toward the astral microtubule minus ends provides a pulling force on centrosomes and is essential for spindle orientation and pole separation during cell division (Dujardin and Vallee, 2002; Kotak et al., 2012). Molecular cues embedded in the cortex can thus determine spindle orientation by anchoring the dynein–dynactin complex in restricted domains. In cultured MDCK and chick neuroepithelia cells, the Gαi–LGN–nuclear mitotic apparatus (NuMA) complex serves this function (Busson et al., 1998; Hao et al., 2010; Zheng et al., 2010; Peyre et al., 2011). Knockdown or mislocalization of these factors leads to spindle orientation defects that ultimately lead to removal of cell progenitors from the monolayer (Peyre et al., 2011). LGN (Pins in Drosophila) localizes to the lateral cell cortex by binding to the membrane-bound Gαi and enforces spindle orientation by recruiting NuMA (Mud in Drosophila), which binds directly to the dynein–dynactin motor. In certain epithelia, including MDCK cells and Drosophila wing discs, LGN is excluded from the apical domain by atypical PKC (aPKC) phosphorylation, thus restricting it at the lateral cell cortex (Konno et al., 2008; Hao et al., 2010; Zheng et al., 2010; Guilgur et al., 2012). In chick neuroepithelia, however, LGN is restricted at the lateral cortex independently of aPKC, suggesting that other cues control its localization (Morin et al., 2007; Peyre et al., 2011). In the mouse embryonic neocortex, the actin–membrane linkers ERM (ezrin/radixin/moesin) promote the association of LGN with NuMA (Machicoane et al., 2014), indicating that organized cortical actin is critical for correct LGN localization.Cell–cell junctions have been implicated in planar cell division in mammalian epithelia, suggesting a possible direct link between the polarity apparatus and the spindle machinery (Reinsch and Karsenti, 1994; den Elzen et al., 2009). Interfering with E-cadherin function or reducing E-cadherin levels abolishes junctional localization of APC (adenomatous polyposis coli), a microtubule-interacting protein that is required for planar spindle orientation and chromosome alignment (Green et al., 2005; den Elzen et al., 2009). However, spindle orientation may not directly depend on E-cadherin or adherens junctions (AJs) in all cases. In Drosophila follicle cells and imaginal discs as well as Xenopus laevis embryonic epithelia, mitotic spindles exhibit planar orientation but do not align with the AJs (Woolner and Papalopulu, 2012; Bergstralh et al., 2013; Nakajima et al., 2013). Moreover, disruption of AJs in Drosophila follicle cells does not affect spindle position (Bergstralh et al., 2013).In Drosophila wing discs, the spindle poles localize in close proximity to septate junctions, which are positioned immediately basal to AJs (Nakajima et al., 2013). Septate junctions are enriched with many proteins, including the neoplastic tumor suppressors SCRIB (Scribbled) and DLG1 (Discs large 1; Bilder and Perrimon, 2000; Bilder et al., 2000). In asymmetrically dividing cells, such as Drosophila sensory organ precursors and neuroblasts, DLG1 interacts with LGN at the cortex and is required for proper spindle orientation (Bellaïche et al., 2001; Siegrist and Doe, 2005; Johnston et al., 2009). Recent findings indicate that DLG1 is also essential for planar spindle orientation in the symmetric division of epithelial cells. In wing discs, knockdown of scrib or dlg1 leads to randomized spindle orientations. scrib knockdown wing discs exhibit diffuse DLG1 localization but no obvious apicobasal polarity defect, suggesting that epithelial disorganization could be a consequence of aberrant spindle orientation (Nakajima et al., 2013). However, it is not clear whether the septate junctions themselves are important. In Drosophila follicle epithelial cells where septate junctions do not form until relatively late in development (Oshima and Fehon, 2011), DLG1 is localized at the lateral cell cortex and is essential for planar spindle orientation (Bergstralh et al., 2013). Interestingly, dlg1 mutant follicle cells display misoriented divisions yet normal epithelial polarity and tissue organization. In this case, planar spindle orientation appears to be independent of junctions per se but still depends on a DLG1–LGN–NuMA complex, similar to asymmetrically dividing cells (Bergstralh et al., 2013).

Global stress and local cell geometry influence mitotic spindle orientation within the plane of the epithelium.

During planar divisions, the mitotic spindle aligns to the plane of the epithelium (xz; Fig. 2 C) and also within the plane of the cell layer (xy; Fig. 2 D). Studies in gastrulating zebrafish embryos revealed a role for the Wnt–Frizzled–planar cell polarity signaling pathway in orienting cell divisions (Concha and Adams, 1998; Gong et al., 2004). Similarly, the atypical cadherins Fat and Dachsous are involved in orienting cell divisions in the Drosophila wing and in developing mouse kidneys (Baena-López et al., 2005; Saburi et al., 2008). Although both of these pathways have been reviewed elsewhere (Morin and Bellaïche, 2011), recent studies also point to at least two other mechanisms that may independently influence spindle orientation within the plane of the monolayer: (1) global tissue stress and (2) local epithelial cell geometry.Epithelial cell shape and spindle orientation are modulated by global stress that accumulates during tissue growth. In Drosophila wing discs, cells in the center of the wing blade primordium proliferate at a faster rate than in the periphery. Consequently, cells in the periphery are mechanically stretched, and cells in the center are compressed. As a result of stretching, peripheral cells localize myosin II at their cortex and align their mitotic spindle with the stretch axis (LeGoff et al., 2013; Mao et al., 2013). Similarly, epithelial cells of the enveloping cell layer in gastrulating zebrafish embryos elongate and orient their spindle along the direction of tension generated by spreading during epiboly (Campinho et al., 2013). It is unclear whether myosin II directly conveys cell tension to the mitotic apparatus, and it will be necessary to dissect whether cell elongation alone or additional mechanosensing pathways signal cell tension to the mitotic spindle. Keratinocytes from the mammalian epidermis reorient their mitotic spindle in response to mechanical stretch in a NuMA-dependent manner. The mitotic spindle aligns with the cortical NuMA-localized crescent upon stretch and fails to orient when NuMA levels are reduced (Seldin et al., 2013). In summary, global tension generated by growth and cell spreading impact division orientation, suggesting that shape changes in proximity to dividing cells may also lead to a similar effect.Although variations certainly exist, the apical surfaces of proliferating epithelia tend to feature a consistent percentage of hexagonal, pentagonal, heptagonal, and octagonal cell shapes (Gibson et al., 2006; Farhadifar et al., 2007; Aegerter-Wilmsen et al., 2010). In Drosophila imaginal discs, these local patterns of cell packing may systematically influence spindle orientation, as mitotic cells are biased toward cleaving their common interfaces with subhexagonal neighbors (less than six sides) and avoid cleaving their interfaces with superhexagonal neighbors (more than six sides; Gibson et al., 2011). Although the mechanisms underlying the effect of local cell geometry remain elusive, cell packing influences mitotic cell shape and the distribution of adhesive cues, both of which could, in turn, bias spindle orientation. Indeed, dividing cells maintain contacts with their neighbors, which can influence the cell cortex and direct spindle orientation (Goldstein, 1995; Wang et al., 1997). The distribution of adhesions between epithelial cells may also alter the position or action of cortical force generators that interact with spindle microtubules in the mitotic cell. In support of this idea, when single cells are placed on micropatterned substrates, they orient their spindle relative to the geometry of their adhesion pattern and not their cell shape (Théry et al., 2005, 2007). Alternatively, neighbors of different polygonal shapes could stretch the mitotic cell, thus imposing a bias on its long axis. Indeed, sea urchin embryos orient their spindles to divide their longest axis (Hertwig, 1884) and can even sense complex cell geometries to orient their spindles accordingly (Minc et al., 2011). Still, precisely how the interphase morphology of epithelial cells might impinge on mitotic spindle orientation remains an open question.

Genesis of nascent junctions during epithelial cell division

After spindle orientation, the essential processes of cytokinesis and abscission are driven by the assembly and contraction of an actomyosin ring positioned in the cleavage plane (Fededa and Gerlich, 2012). In epithelia, ring contraction accompanied by membrane invagination ultimately gives rise to a new junctional interface between nascent daughter cells. Precisely how this new interface forms remains poorly understood. Recent studies in Drosophila epithelia reveal that, during cytokinesis, (a) E-cadherin levels are reduced at the interface between the cleavage furrow of dividing cells and their neighbors (Fig. 3), and (b) neighbor tension and midbody position guide establishment of new AJs in context with local epithelial geometry (Fig. 4).Open in a separate windowFigure 3.Cytokinetic membrane dynamics in epithelial cells. (A) Cytokinesis of a dividing epithelial cell (yellow) presents several unique structural considerations not addressed by the analysis of single cells. Recent studies (Founounou et al., 2013; Guillot and Lecuit, 2013a; Herszterg et al., 2013, 2014) report a local reduction of E-cadherin levels in proximity to the contractile ring in the dividing cell and its neighbor (red). How cytokinesis is resolved from there may vary in a context-dependent manner. (B) In Drosophila embryos, ring contraction leads to E-cadherin disengagement, and a gap forms between the mitotic cell and its neighbor (Guillot and Lecuit, 2013a). (C) In the Drosophila pupal notum, the contractile ring pulls the neighbor cell plasma membrane into the cleavage furrow, perhaps enabled by uncoupling of the membrane and the cortex in the neighbor (Herszterg et al., 2013, 2014).Open in a separate windowFigure 4.New AJ formation in dividing epithelial cells. Apical cross section (xy, top row) and longitudinal (xz, bottom row) view of a dividing epithelial cell (red). (A) Opposing forces (black vertical arrows) develop between the contractile ring in the dividing cell and the two neighboring cells (orange) in proximity to the cleavage furrow. E-cadherin clusters are reduced at the furrow/neighbor interface. (B) Myosin II and tension build up in the neighboring cell, causing the nascent daughter cells to juxtapose their plasma membranes at the presumptive site of junction assembly (black horizontal arrows). (C) Arp2/3 and Rac1 drive actin polymerization at the daughter cell interface around the midbody, stabilizing the nascent junction as the neighboring cell membrane withdraws. (D) The new junction is complete and of suitable length in context with the local epithelial geometry.

Mitotic cells remodel their adhesion junctions during cytokinesis.

Two kinds of forces are at work during cytokinesis: an active force in the dividing cell caused by ring contraction and a reactive force in contacting neighbors caused by their resistance to pulling to maintain their shape (Fig. 3 and Fig. 4 A; Founounou et al., 2013; Guillot and Lecuit, 2013a; Herszterg et al., 2013). Recent results indicate that these opposing forces can lead to a transient and partial reduction of cell adhesion after mitotic exit. In Drosophila epithelia, E-cadherin levels are reduced at the interface between the cleavage furrow of the dividing cell and its neighbors (Fig. 3, B and C; Founounou et al., 2013; Guillot and Lecuit, 2013a; Herszterg et al., 2013; Morais-de-Sá and Sunkel, 2013). Specifically in embryonic epithelia, the local reduction of E-cadherin facilitates membrane separation, and a gap appears between the dividing cell and its neighbors (Fig. 3 B; Guillot and Lecuit, 2013a). In the dorsal thorax, in contrast, the neighbor cell plasma membrane detaches from the cortex and is drawn into the cleavage furrow (Fig. 3 C; Herszterg et al., 2013, 2014). What triggers E-cadherin modulation in cells after mitotic exit? The loss of overall cell polarity is one possible mechanism. During mitosis in Drosophila, follicular epithelial cells lose cortical enrichment of some apical polarity proteins (aPKC, Crumbs, and Bazooka/Par3; Bergstralh et al., 2013; Morais-de-Sá and Sunkel, 2013), and embryonic cells lose localization of lethal giant larvae, a basolateral cortical protein (Huang et al., 2009). Contrasting with these observations, however, MDCK cells and Drosophila embryonic and dorsal thorax epithelial cells appear to maintain apicobasal polarity as they divide (Reinsch and Karsenti, 1994; Founounou et al., 2013; Guillot and Lecuit, 2013a; Herszterg et al., 2013). Furthermore, E-cadherin reduction is limited to the furrow/neighbor interface and is not observed in other areas of cell contact. Therefore, an alternative mechanism that explains local E-cadherin modulation is mechanical tension that arises precisely at the area between the contractile ring and the neighboring cell membrane (Founounou et al., 2013; Guillot and Lecuit, 2013a).Does E-cadherin modulation serve a functional role in mitotic cells? In Drosophila embryonic and dorsal thorax epithelia, E-cadherin decrease leads to a local adhesion disengagement proposed to facilitate the formation of new AJs between daughter cells (Founounou et al., 2013; Guillot and Lecuit, 2013a). It has been previously reported that cells maintain their AJs throughout division. For example, intercellular junctions are maintained in dividing cells of human colonic mucosal crypt cells and basal keratinocytes (Baker and Garrod, 1993). Similarly, mitotic MDCK cultured cells maintain tight junctions apically and E-cadherin basolaterally (Reinsch and Karsenti, 1994). The E-cadherin loss in certain Drosophila epithelia may be either a tissue-specific phenomenon or a highly dynamic process only observable with the temporal resolution of live-cell imaging. Moreover, dividing cells in the Drosophila dorsal thorax show decreased levels of E-cadherin yet maintain their cohesiveness (Herszterg et al., 2013). Interestingly, E-cadherin is internalized in mitotic MDCK cells (Bauer et al., 1998). It will therefore be important to investigate whether loss of E-cadherin leads to adhesion disengagement in other epithelial tissues and whether tension alone or in combination with biochemical pathways is responsible for E-cadherin modulation.

Epithelial neighbors exert tension on daughter cell membranes to facilitate new AJ formation.

How new junctional contacts form during mitosis is a poorly understood problem at the heart of epithelial cell biology. In Drosophila, new membrane interfaces between nascent daughter cells initially show only a weak level of E-cadherin clusters (Guillot and Lecuit, 2013a; Herszterg et al., 2013). Subsequently, the daughter cells assemble their AJs de novo. How is the length of these new junctions determined with respect to cell geometry? Recent evidence indicates that AJ length is a function of local cell packing within the epithelium. In dividing cells of the Drosophila dorsal thorax, the contractile ring triggers tension and accumulation of myosin II in neighbors at the furrow/neighbor interface (Fig. 4 B; Founounou et al., 2013; Herszterg et al., 2013). Myosin II in the neighboring cells in turn contracts and creates tension at the furrowing membrane of the nascent daughter cells, keeping them tightly pressed against each other (Fig. 4, B and C). This local membrane juxtaposition facilitates AJ formation. To allow expansion of the daughter cell interface and maintain AJ length, branched actin polymerization via Rac1 and Arp2/3 is oriented to the midbody, which serves as a positional landmark for new AJs (Fig. 4 C; Herszterg et al., 2013). The midbody is a narrow intercellular bridge that remains after the contracted cytokinetic ring has driven membrane invagination, and it recruits the abscission factors that will eventually separate the daughter cells (Fededa and Gerlich, 2012). Interestingly, the midbody is positioned apically as a result of the presence of AJs. In Drosophila follicular epithelia, the midbody also provides cues for the formation of the apical daughter cell interface, suggesting that it plays a role in both AJ and epithelial cell polarity establishment and maintenance in dividing epithelial cells (Morais-de-Sá and Sunkel, 2013). Thus, examples from Drosophila epithelia show that cohesion between dividing cells and their neighbors together with the apically positioned midbody provides a spatial template and polarized positional cue for de novo AJ assembly (Herszterg et al., 2013; Morais-de-Sá and Sunkel, 2013). Further work on other epithelial tissues may provide alternative mechanisms of junction biogenesis.

Growth and order in the epithelium: Thinking outside the cell

During development, epithelial monolayers have the remarkable capacity to maintain specialized morphologies and barrier functions during rapid cell proliferation. Mitotic cells remain adherent to their neighbors throughout cell division. Cell cohesion enables local geometry and global tissue tension to instruct mitotic cells where to position their cleavage plane and how to assemble their junctions. However, local tension may also lead to a transient disengagement of dividing cells from their neighbors after mitotic exit. How is global and local tension conveyed to protein complexes in mitotic cells so that different outcomes take place? Moreover, it is unclear whether and how tissue tension instructs synchronously dividing epithelial cells how to divide and reestablish their junctions after division. Clearly, this is a fundamental problem for the maintenance of epithelial order and may be linked to the origin of epithelial cancers, in which cells undergo rapid proliferation but fail to remain integrated into the monolayer.The selected studies discussed here hint at the remarkable level of coordination that occurs during epithelial cell division, recasting mitosis as a truly multicellular process. Looking ahead, understanding the interface between cells, proteins, and mechanical forces that each operate on different scales will require creative multidisciplinary approaches in diverse organismal systems. Indeed, epithelial organization is widespread in nature and is encountered among even the most basal animals, including sponges and cnidarians as well as the fruiting body of the nonmetazoan social amoeba Dictyostelium discoideum (Wood, 1959; Ereskovsky et al., 2009; Houliston et al., 2010; Dickinson et al., 2011; Meyer et al., 2011). Combined, future interdisciplinary studies and a fresh look at diverse animal models should yield new insight into epithelial cell division for many years to come.  相似文献   

16.
Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation.Chemical synapses are highly specialized, asymmetric intercellular junction structures that are the basic units of neuronal communication. Proper development of synapses determines appropriate connectivity for the assembly of functional neuronal circuits. Synaptic circuits arise during development through a series of intricate steps (Waites et al., 2005; McAllister, 2007; Jin and Garner, 2008). First, spatiotemporal cues guide axons through complex cellular environments to contact their appropriate postsynaptic targets. At their destination, synapse formation is specified and initiated through adhesive interactions between synaptic partner cells or by local diffusible signaling molecules. Stabilization of intercellular contacts and assembly into functional synapses involves cytoskeletal rearrangements, aggregation, and insertion of pre- and postsynaptic components at nascent synaptic sites. Maturation and modulation of these newly formed synapses can then occur by altering the organization or composition of synaptic proteins and post-translational modifications to achieve its required physiological responsiveness (Budnik, 1996; Lee and Sheng, 2000). Conversely, retraction of contacts and elimination of inappropriate synaptic proteins help to refine the neuronal circuitry (Goda and Davis, 2003; Sanes and Yamagata, 2009).Over the last decade, new insights have furthered our understanding of synapse development through the identification of new molecular players and by advanced imaging technology that has allowed for high-resolution inspection of the dynamics and relative positions of synaptic proteins. This review will highlight recent results on the development of presynaptic specializations, and the roles of trans-synaptic organizers, intracellular synaptic proteins, and the cytoskeleton during the formation and maintenance of synapses.

Axonal transport of synaptic vesicle and active zone proteins

After cell fate determination and morphogenesis, neurons continue to differentiate by entering the phase of synapse formation. Most synaptic material required for this process is synthesized in the cell body of neurons and transported to synapses by microtubule (MT)-based molecular motors (Fig. 1). MTs are intrinsically polarized filaments with a plus and a minus end (Fig. 1 B). MT-based molecular motors use this polarity to transport cargoes to specific cellular locations. Examination of MTs by electron microscopy in dissociated cultured neurons showed that the organizations of MTs is different in axon and dendrite (Baas et al., 1988, 2006). In axons, all microtubules have their minus ends oriented toward the cell body and their plus ends extend distally. On the contrary, the MT polarity in dendrites is mixed. Recent studies tracking the movement of end-binding MT-capping proteins confirmed these results in vivo. Specifically, axonal MTs are uniformly organized with their plus ends pointing distally in all organisms. Dendrites of vertebrate neurons show more plus end–out MTs in vivo, whereas flies and worms have more minus end–out MTs in dendrites (Stepanova et al., 2003; Rolls et al., 2007; Stone et al., 2008).Open in a separate windowFigure 1.Regulatory steps during polarized motor-based transport of synaptic material. (A) At the Golgi apparatus, synaptic proteins have to be sorted into appropriate vesicles. These vesicles and other cargo such as mitochondria get loaded onto specific motor proteins. (B) Establishment of proper microtubule polarity along the axon determines anterograde and retrograde trafficking by plus end– and minus end–directed motor proteins such as kinesins and dynein. (C) At the appropriate destination, motor-cargo unloading occurs in a regulated fashion to achieve the appropriate distribution of synaptic boutons. At synapses, synaptic vesicle precursors give rise to mature synaptic vesicles. Proteins required for the SV cycle and trans-synaptic adhesion coalesce into the active zone (AZ) underneath the plasma membrane juxtaposed against the postsynaptic membrane.Does the difference in microtubule organization and polarity help to segregate synaptic cargoes between axons and dendrites? Recent studies have started to identify some molecules that create these differences in MT polarity in different neuronal subcellular compartments and show how disruption of their function affects synapse formation. For example, a recent paper showed that kinesin-1 is required to establish the predominantly minus end–out organization in the dendrites of Caenorhabditis elegans motor neurons (Yan et al., 2013). In kinesin-1/unc-116 mutants, dendrites adopt the axon-like MT polarity causing presynaptic cargoes to mislocalize into dendrites (Seeger and Rice, 2010; Yan et al., 2013). Similarly, loss of the MT-binding CRMP protein UNC-33 or the actin–spectrin adaptor protein ankyrin/UNC-44 in worms also results in MT polarity defects, which also results in ectopic localization of synaptic vesicles and active zone proteins into dendrites (Maniar et al., 2012). These results support the idea that MT polarity ensures the faithful targeting of presynaptic components to the axon. However, another way motors can distinguish between axons and dendrites is through MT-associated proteins (MAPs). In a recent study, Banker and colleagues showed that plus end–orienting kinesins can differentiate axon and dendrite, likely due to specific MT-binding proteins in these compartments (Huang and Banker, 2012).The direct regulation of motor activity by MTs or synaptic vesicle–associated proteins is likely to contribute to the trafficking of synaptic cargoes. Doublecortin, a MAP, binds to kinesin-3/KIF1A to affect the trafficking of the synaptic vesicle protein, synaptobrevin, in hippocampal neurons by altering the affinity of ADP-bound KIF1A to MTs (Liu et al., 2012). The Rab3 guanine nucleotide exchange factor, DENN/MADD, functions as an adaptor between kinesin-3 and GTP-Rab3–containing synaptic vesicles to promote the trafficking of synaptic vesicles in the axon (Niwa et al., 2008).Precise regulation of motor-based transport ensures that synaptic cargoes are delivered to and maintained at synapses. Several recent studies have provided evidence that two postmitotic cyclin-dependent kinases are important regulators of anterograde and retrograde trafficking of presynaptic cargoes. The kinase CDK-5 is required in many aspects of nervous system function. In the context of presynaptic development and function, CDK-5 has been shown to regulate the transport of synaptic vesicles and dense core vesicles, which contain neuropeptides, by inhibiting a dynein-mediated pathway that mobilizes presynaptic components to the somatodendritic compartments in C. elegans neurons (Ou et al., 2010; Goodwin et al., 2012). A paralogue of CDK-5, the PCT-1 kinase acts in a partially redundant pathway to prevent the mislocalization of presynaptic material to dendrites. In animals lacking both kinases or their activators, synaptic cargoes completely mislocalize to the dendrites, leaving an “empty” axon (Ou et al., 2010). Vertebrate CDK-5 also plays profound roles in the regulation of synaptic vesicle pools by modifying Ca2+ channels. Genetic ablation or pharmacological inhibition of CDK-5 increases the pool of synaptic vesicles that are docked at the active zone, termed the readily releasable pool, and potentiates synaptic function (Kim and Ryan, 2010, 2013). These results suggest that CDK-5 and its paralogue control local and global vesicle pools. Regulation of the exchange between these pools can affect membrane trafficking at presynaptic terminals as well as the overall polarity of neurons.To form synapses at defined locations, cargoes not only need to know how to “get on” the transport system but also need to know where to precisely “get off” at their destination (Fig. 1 C). Loss of a conserved small G-protein of the Arf-like family, ARL-8, in C. elegans, resulted in premature exit of synaptic cargoes during transport and showed ectopic aggregations of synaptic vesicles in the proximal axon. This causes a reduction in the number but an increase in the size of synapses (Klassen et al., 2010). ARL-8 localizes to both stable and trafficking synaptic vesicles and promotes trafficking by increasing kinesin-3 activity and suppressing aggregation-induced stoppage of synaptic cargoes along the axon (Wu et al., 2013). Hence, the balance between motor activity and aggregation propensity of trafficking cargoes may determine the number, size, and location of presynaptic terminals. Interestingly, the small GTPase Rab3, which normally associates with synaptic vesicles, has recently been shown to affect the distribution of active zone proteins at fly neuromuscular junction (NMJ) synapses, further suggesting that the trafficking of synaptic vesicles and formation of active zones are linked (Graf et al., 2009).Besides synaptic material, another major organelle cargo that is often present at the presynaptic terminal is mitochondria. The Milton–Miro complex functions as an adaptor between kinesin-1 and mitochondria to support axonal transport of mitochondria. Interestingly, the coupling of the Milton–Miro complex to kinesin is regulated by Ca2+ (Macaskill et al., 2009; Wang and Schwarz, 2009), providing a mechanism for neuronal activity controlling transport of mitochondria along the axon.Previous studies have suggested that components of the presynaptic active zone are transported in a preassembled form by Piccolo-Bassoon transport vesicles (PTVs) that may contain multiple components required to build a synapse (Zhai et al., 2001; Shapira et al., 2003). Recent studies found that Golgi-derived PTVs contain many active zone proteins including Piccolo, Bassoon, RIM1α, and ELKS2/CAST, but lack another active zone component, Munc-13, which may exit the Golgi on separate vesicles (Maas et al., 2012). Packing of various active zone components that have the propensity to self-assemble into separate vesicles may contribute a way to control synaptogenesis. This is interesting in light of the finding that Munc-13 can function as a protein scaffold for Bassoon and ELKS2 (Wang et al., 2009). The link between trafficking of synaptic vesicle and active zone components is not well understood. In vivo time-lapse imaging of synaptic vesicle and active zone trafficking showed that these components, possibly in the form of dense core vesicles, could be trafficked together in C. elegans neurons, suggestive of prepackaged presynaptic material during transport (Wu et al., 2013). Taken together, axonal transport of synaptic components is a necessary step for synapse formation and maintenance. The regulation of MTs, molecular motors, and synaptic cargoes ensure the targeting of appropriate proteins to synapses.

Role of the actin cytoskeleton in presynaptic assembly

Although MT-mediated transport is critical for long-range trafficking, actin-based mechanisms often organize local protein complexes in subcellular domains. A large body of work has described the role of the actin cytoskeleton in postsynaptic structure and function (Schubert and Dotti, 2007; Hotulainen and Hoogenraad, 2010). We will focus on more recent work that has highlighted the importance of the actin cytoskeleton in presynaptic formation.F-actin is required for presynaptic assembly during the early stages of synaptogenesis. Depolymerization of F-actin in young hippocampal neuronal cultures results in a reduction in the size and number of synapses. This effect was not seen with older cultures when synapses are more mature (Zhang and Benson, 2001). This observation correlates with an increase in both pre- and postsynaptic F-actin levels in newly formed synapses compared with mature synapses (Zhang and Benson, 2002).F-actin has been implicated in many steps of synapse assembly and function (Fig. 2; Cingolani and Goda, 2008). One of the roles that has been proposed for F-actin is to act as a scaffold for other presynaptic proteins (Sankaranarayanan et al., 2003). A recent study identified an F-actin–binding active zone molecule Neurabin/NAB-1 that is recruited by a presynaptic F-actin network (Chia et al., 2012). In addition, knockdown of Rac/Cdc42 GTPase exchange factor β-Pix resulted in a decrease in actin at synapses with a concomitant loss of synaptic vesicle clustering (Sun and Bamji, 2011). These studies demonstrate that F-actin at presynaptic sites can recruit and stabilize presynaptic components.Open in a separate windowFigure 2.Assembling the presynaptic active zone. Scaffolding proteins including Liprin, SYD-1, ELKS, Neurabin, Piccolo, and Bassoon form the dense protein network in the presynaptic cytomatrix that facilitates synaptic vesicle docking and fusion. The presynaptic F-actin networks are required for presynaptic assembly and maintenance.Studies of Drosophila NMJs have found that the presynaptic spectrin–actin cytoskeleton is important for synapse stability. Loss of presynaptic spectrin led to retraction of synapses (Pielage et al., 2005). Intriguingly, loss of postsynaptic spectrin increased the total number of the active zone specializations, termed T-bars, and affected the size and distribution of presynaptic sites. Thus, the spectrin cytoskeleton can impose a trans-synaptic influence on synapse development (Pielage et al., 2006).Given the importance of F-actin at synapses, it is crucial to understand the signaling pathways that instruct F-actin organization. Multiple studies have shown that signaling from synaptic cell adhesion molecules can lead to cytoskeletal rearrangements at synapses. Adhesion of hippocampal neurons to syndecan-2–coated beads is sufficient to induce F-actin clustering and downstream formation of presynaptic boutons (Lucido et al., 2009). In mice, the adhesion molecule L1CAM may bind to spectrin–actin adaptor ankyrin to mediate GABAergic synapse formation (Guan and Maness, 2010). Another adhesion molecule of the immunoglobulin superfamily SYG-1 in C. elegans has also been shown to be necessary and sufficient to recruit F-actin to synapses (Chia et al., 2012). In a recent study, secreted bone morphogenetic protein (BMP) can signal in a retrograde fashion to regulate Rac-GEF Trio expression in presynaptic neurons, which is important for controlling synaptic growth (Ball et al., 2010).Interestingly, presynaptic active zone proteins can also affect F-actin assembly (Fig. 2). Knockdown of Piccolo reduced activity-dependent assembly of F-actin at synapses and enhanced dispersion of Synapsin1a and synaptic vesicles in hippocampal neurons. Loss of Piccolo also resulted in a loss of Profilin 2, a regulator of actin polymerization (Waites et al., 2011).Various studies have begun to shed light on the actin regulators required for synaptic F-actin establishment and maintenance. Diaphanous, a formin-related gene that associates with barbed ends of F-actin, was found to function downstream of presynaptic receptor Dlar at fly NMJs. Spectrin–actin capping protein, Adducin, is enriched at presynaptic sites and is required to prevent synapse retraction and elimination (Bednarek and Caroni, 2011; Pielage et al., 2011). Activators of the Arp2/3 complex, WASP and WAVE, have also been implicated in the regulation of F-actin at synapses (Coyle et al., 2004; Stavoe et al., 2012; Zhao et al., 2013). This diversity of F-actin modulators suggests that there are probably different F-actin structures at different stages of development or even in subcellular domains within the synapse. This is supported by observations that F-actin can localize with synaptic vesicles, at the active zone and in the perisynaptic region (Bloom et al., 2003; Sankaranarayanan et al., 2003; Waites et al., 2011; Chia et al., 2012). Thus, much remains to be done in our understanding how distinct F-actin structures are formed and regulated to mediate various processes during synapse assembly and maintenance.

Assembly of the molecular network at presynaptic terminals

Although F-actin might help to initiate the presynaptic assembly process, many other ensuing molecular interactions are required to form the mature presynaptic apparatus (Fig. 2). The presynaptic active zone is comprised of a framework of scaffolding proteins that function as protein-binding hubs for other presynaptic components. Piccolo and Bassoon are important vertebrate multidomain proteins that traditionally have been widely used as active zone markers. Recent electrophysiology data on Piccolo mutant and Bassoon knockdown neurons showed that these molecules are dispensable for synaptic transmission but affect synaptic vesicle clustering (Mukherjee et al., 2010). Furthermore, Piccolo and Bassoon were found to be required for maintaining synapse integrity by regulating ubiquitination and degradation of presynaptic components (Waites et al., 2013).Forward genetic approaches in worms and flies have made important contributions to our understanding of the presynaptic cytomatrix. Studies have found that two active zone scaffolding molecules, SYD-1 and Liprin-α/SYD-2, are required for proper synapse formation (Zhen and Jin, 1999; Patel et al., 2006; Astigarraga et al., 2010; Owald et al., 2010; Stigloher et al., 2011). Interestingly, at fly NMJs, SYD-1 is necessary for clustering presynaptic neurexin that in turn clusters postsynaptic neuroligin (Owald et al., 2012). The presynaptic assembly function of SYD-1 and SYD-2 appears to be conserved because mutation analysis of mammalian SYD-1 and knockdown of Liprin-α both caused defects in presynaptic development and function (Spangler et al., 2013; Wentzel et al., 2013). In flies, the active zone T-bar structure is comprised of ERC/CAST family protein bruchpilot (brp) as the major active zone organizing protein (Fouquet et al., 2009). Brp is not only present at the active zone but also plays important scaffolding roles in localizing Ca2+ channels. In C. elegans, the Brp homologue ELKS-1 is also localized to the active zone; however, the importance of ELKS-1 during development of synapses was only revealed in sensitized genetic backgrounds (Dai et al., 2006; Patel and Shen, 2009), suggesting that there are likely redundant molecular pathways for presynaptic assembly. In the vertebrate system, loss of one of the three ELKS genes, surprisingly, caused an increase in the inhibitory synaptic transmission (Kaeser et al., 2009). Besides Brp, Rab3-interacting molecule (RIM) binding protein (RBP) was found to be important for active zone structural integrity in flies. Using super-resolution microscopy, RBP was found to surround Ca2+ channels at T-bars and loss of RBP resulted in defective Ca2+ channel clustering and reduced evoked neurotransmitter release (Liu et al., 2011).Assembly of the presynaptic active zone is subjected to several layers of regulation. The assembly process is balanced by inhibitory mechanisms that control the number and size of synapses. Loss of the E3 ubiquitin ligase Highwire/RPM-1 results in an increased number of synaptic boutons in flies and multiple active zones in worms (Wan et al., 2000; Zhen et al., 2000). Working together with F-box protein FSN-1, RPM-1 down-regulates the DLK MAP kinase signaling pathway (Liao et al., 2004; Nakata et al., 2005; Yan et al., 2009). Another E3 ubiquitin ligase, the SKP complex, has been shown to eliminate transient synapses during development in worms (Ding et al., 2007). Therefore, ubiquitin-mediated mechanisms play important roles in controlling the presynaptic assembly program.Other inhibitory mechanisms include SRPK79D, a serine–arginine protein kinase discovered in flies that represses T-bar formation (Johnson et al., 2009). In the mutant, the T-bar component Brp is ectopically accumulated in the axonal shaft. Regulator of synaptogenesis, RSY-1, limits the extent of presynaptic assembly by directly binding to active zone scaffold molecule Liprin-α/SYD-2 and SYD-1 (Patel and Shen, 2009). In addition, Liprin-α/SYD-2 may inhibit its own activity via intramolecular interactions (Taru and Jin, 2011; Chia et al., 2013).Taken together, the presynaptic assembly process driven by scaffolding molecules is controlled by complex inhibitory mechanisms to achieve the appropriate extent of aggregation in the process of synapse formation.

Trans-synaptic signals orchestrate pre- and postsynaptic formation

Coordinated pre- and postsynaptic development requires the precise apposition of presynaptic components to postsynaptic specializations. It is conceivable that signals from pre and postsynaptic sides functioning across the synaptic cleft coordinate synaptic differentiation reciprocally. Although a vast assortment of factors have been identified as synaptic organizers, the fact that genetic ablation of some synaptic organizers in vivo fails to elicit dramatic synaptic defects suggests the incomplete view of the trans-synaptic signaling. Moreover, the underlying mechanisms and the cross talk of these signaling pathways are still unclear. In recent years, an emerging body of literature has begun to shed light on trans-synaptic signaling and the importance of environmental cues in synapse formation.

Adhesion proteins instruct synaptic differentiation

A large body of literature suggests that trans-synaptic interactions between synaptic adhesion molecules function bi-directionally for synapse formation and maturation (Fig. 3). Neurexin–neuroligin is the first pair to be shown to induce pre- and postsynapse formation (Scheiffele et al., 2000; Graf et al., 2004; Chih et al., 2005; Nam and Chen, 2005; Chubykin et al., 2007). Recent in vitro studies have unveiled more components interacting with neurexin or neuroligin in specific synaptic differentiation events (Fig. 3, B and C). In early developmental stages, a secreted synaptic organizer, thrombospondin 1 (TSP1, see next section) increases the speed of synaptogenesis through neuroligin 1 (Xu et al., 2010). At excitatory synapses, a retrograde signaling controls synaptic vesicle clustering, neurotransmitter release, and presynaptic maturation by cooperation of neuroligin and N-cadherin (Wittenmayer et al., 2009; Stan et al., 2010; Aiga et al., 2011). A leucine-rich repeat transmembrane (LRRTM) protein family was also identified as an organizer of the function of excitatory synapses through interactions with neurexin (Linhoff et al., 2009). Further studies showed that binding of LRRTMs and neuroligins to neurexin acts redundantly to maintain excitatory synapses by preventing activity and Ca2+-dependent synapse elimination during early development, while performing divergent functions upon synapse maturation (de Wit et al., 2009; Ko et al., 2009, 2011; Soler-Llavina et al., 2011).Open in a separate windowFigure 3.Adhesive trans-synaptic signalings orchestrate excitatory and inhibitory synaptic assembly. Multiple pairs of trans-synaptic adhesion molecules organize synaptic differentiation and function on both pre- and postsynaptic sites. Note that different adhesion molecules are used at excitatory and inhibitory synapses. LPH1, latrophilin 1; α-DG, α-dystroglycan; β-DG, β-dystroglycan; S-SCAM, synaptic scaffolding molecule; Lasso, LPH1-associated synaptic surface organizer; IL-1RAcp, interleukin-1 receptor accessory protein.The function of neurexin and neuroligin in mediating synaptic differentiation has also been shown at Drosophila NMJs and mammalian CNS. In mammalian, although neither compound knockout of three neurexins nor two individual neuroligin knockout mice display severe defects in the number or morphology of synapses (Missler et al., 2003), the deletion of either neurexin or neuroligin affects the neurotransmitter release and in turn impairs the relevant behavior (Zhang et al., 2005; Blundell et al., 2009, 2010; Etherton et al., 2009; Jedlicka et al., 2011). Neurexin loss of function in fly leads to reduced number and defective morphology of synaptic boutons and active zones from early developmental stages (Li et al., 2007; Chen et al., 2010). In contrast, deletion of either neuroligin 1 or 2 causes NMJ defects and alternations of active zones only in the larval stage, indicating that they function mainly in the expansion of NMJs during development (Banovic et al., 2010; Sun et al., 2011). These abnormalities further impair synaptic transmission at the NMJs (Li et al., 2007; Banovic et al., 2010; Chen et al., 2010; Sun et al., 2011). Moreover, these phenotypes are enhanced when the Teneurin family of adhesion molecules is deleted, suggestive of functional redundancy between adhesion molecules (Mosca et al., 2012). Recently, it has been reported that an active zone protein, SYD-1, is required for the formation and function of the neurexin–neuroligin complex in flies (Fig. 2; Owald et al., 2012), providing an example of how trans-synaptic neurexin–neuroligin signaling orchestrates synaptic assembly bi-directionally. Interestingly, at postsynaptic sites, the NMDA receptor activity-triggered Ca2+-dependent cleavage of neuroligin 1 was found to destabilize presynaptic neurexin, reduce presynaptic release probability, and depress synaptic transmission (Peixoto et al., 2012). This observation raises a possibility that neurexin and neuroligin could fine-tune synaptogenesis both positively and negatively.Although Drosophila neuroligin and neurexin mutants share many phenotypes in synaptic differentiation, there are some unique features for each mutant, suggesting that they play distinct roles. For example, some aspects of synaptic specificity are achieved by different pairs of neurexin–neuroligin interactions. Neuroligin 1 promotes the growth and differentiation of excitatory synapses by binding to PSD-95, whose amount balances the ratio of excitatory-to-inhibitory synaptic specializations (Prange et al., 2004; Banovic et al., 2010). Neuroligin 2, on the contrary, binds to a scaffold protein gephyrin at inhibitory synapses, instructing inhibitory postsynaptic assembly (Fig. 3, B and C; Poulopoulos et al., 2009). Different isoforms of neurexin also contribute to the differentiation of excitatory and inhibitory synapses (Fig. 3, B and C; Chih et al., 2006; Graf et al., 2006; Kang et al., 2008).Other novel trans-synaptic interactions have also been identified to organize synaptic differentiation (Fig. 3, B and C). For example, Netrin-G ligand 3 (NGL-3), localized at postsynaptic region, induces excitatory synaptic differentiation by interacting with the receptor tyrosine phosphatase LAR family proteins, including PTPδ and PTPσ (Woo et al., 2009; Kwon et al., 2010). PTPδ can also trans-interact with Slitrk3 and IL-1 receptor accessory protein (IL-1RAcP) to promote presynaptic formation (Takahashi et al., 2012; Yoshida et al., 2012). Molecules that function in other neuronal developmental processes have also been shown to regulate synaptic differentiation. Farp1, essential for the dynamics of dendritic filopodia, regulates postsynaptic development and triggers a retrograde signal promoting active zone assembly by binding to SynCAM 1 (Cheadle and Biederer, 2012). Teneurins, instructing synaptic partner selection in fly olfactory system (Hong et al., 2012), act in synaptogenesis through trans-synaptic interaction at NMJs (Mosca et al., 2012). Another splice variant of a postsynaptic Teneurin-2 in rat, Lasso, binding with presynaptic Latrophilin 1 (LPH1), induces presynaptic Ca2+ signals and regulates synaptic function (Silva et al., 2011). Neural activity is also involved in controlling the growth of the presynapse. Conditioning or BDNF application induces presynaptic bouton development via an ephrin-B–dependent manner (Li et al., 2011), suggesting the role of EphB/ephrin-B signaling in activity-dependent synaptic modification.

Secreted molecules organize synapse differentiation

In addition to adhesion molecules, some secreted molecules also serve as synaptic organizers (Fig. 4). For example, the motor neuron–derived ligand agrin, which was the first identified secreted organizing molecule for postsynaptic differentiation, activates MuSK, a postsynaptic receptor tyrosine kinase, to regulate NMJ specialization (Glass et al., 1996; Zhou et al., 1999). Recently, a low-density lipoprotein receptor–related protein, LRP4, was identified as the co-receptor of agrin, forming a complex with MuSK and mediating MuSK signaling (Kim et al., 2008; Zhang et al., 2008). Several Wnts appears to act together with agrin to activate the LRP4–MuSK receptor complex to promote postsynaptic differentiation (Jing et al., 2009; Zhang et al., 2012). LRP4 also acts as a direct retrograde signal, functioning independently of MuSK for presynaptic differentiation (Yumoto et al., 2012), demonstrating that LRP4 acts as a bi-directional synaptic organizer (Fig. 4, left).Open in a separate windowFigure 4.Secreted trans-synaptic signaling at NMJs and CNS synapses. (Left) At Drosophila neuromuscular junctions (NMJs), Wnts are secreted from presynaptic terminals in association with Evi in the form of exosomes. In vertebrate NMJs, Wnt binds to the Agrin–LRP4–MuSK complex to regulate synapse formation. (Right) At CNS synapses, glia-derived thrombospondins (TSPs) and presynaptic neuron–derived cerebellin (Cbln) organize synapse differentiation and formation bi-directionally through binding to GluD2 and an isoform of neurexin (S4+) on the postsynaptic and presynaptic membranes, respectively. LTCC, L-type Ca2+ channel complex; AChR, acetyl choline receptor.Wnt is another well-characterized signaling molecule regulating many developmental processes including synaptic differentiation bi-directionally. Wnt regulates synaptic assembly both positively and negatively. For example, Wnt3 collaborates with agrin to promote the clustering of acetyl choline receptor (AChR) at the vertebrate NMJs (Henriquez et al., 2008), while Wnt3a inhibits AChR aggregation through β-catenin signaling (Wang et al., 2008). In the C. elegans NMJ, a Wnt molecule, CWN-2, stimulates the delivery and insertion of AchR to the postsynaptic membrane through the activation of a Frizzled–CAM-1 receptor complex (Jensen et al., 2012). Local Wnt gradient can suppress synapse formation in both C. elegans and Drosophila (Inaki et al., 2007; Klassen and Shen, 2007). Interestingly, in these contexts, Wnts are secreted from nonneuronal or nonsynaptic partner cells, suggesting that environmental factors can shape synaptic connections. Wnt can also be secreted from presynaptic neurons. A recent study demonstrated the trans-synaptic transmission of Wnt by exosome-like vesicles containing the Wnt-binding protein Evi at Drosophila NMJs (Fig. 4, left; Korkut et al., 2009; Koles et al., 2012). Presynaptic vesicular release of Evi is required for the secretion of Wnt. Intriguingly, different Wnt ligands regulate synapse formation in distinct cellular contexts. Wnt3a promotes excitatory synaptic assembly through CaMKII, whereas Wnt5a mediates inhibitory synapse formation by stabilizing GABAA receptors (Cuitino et al., 2010; Ciani et al., 2011). This functional diversity indicates that different Wnts, receptors, and downstream pathways, as well as cell-specific contexts dictate the action of extracellular cues. Another conserved secreted molecule, netrin/UNC-6, can also pattern synapses by either promoting or inhibiting synapse formation (Colón-Ramos et al., 2007; Poon et al., 2008). Because Wnt and netrin often exist in gradients, these observations suggest that the localization of synapses can be specified by the gradient of extrinsic cues.In mammalian, several glia-derived cues have been shown to play important roles in regulating synapse formation or elimination. Thrombospondins (TSPs) are trans-synaptic organizers secreted from immature astrocytes (Christopherson et al., 2005). Both in vitro and in vivo data demonstrate the capacity of TSPs to increase synapse number, promote the localization of synaptic molecules, and refine the pre- and postsynaptic alignment (Christopherson et al., 2005; Eroglu et al., 2009). Recently, two transmembrane molecules were uncovered in mediating TSP-induced synaptogenesis (Fig. 4, right). Neuroligin 1 interacts with TSP1 with its extracellular domain mediating the acceleration of synaptogenesis in hippocampal neurons (Xu et al., 2010). α2δ-1, a subunit of the L-type Ca2+ channel complex (LTCC), was also identified as the postsynaptic receptor of TSP in excitatory CNS neurons (Eroglu et al., 2009). Interaction between TSP and α2δ–1 triggers the conformational changes and sequentially recruits synaptic scaffolding molecules and initiates synapse formation (Eroglu et al., 2009). Interestingly, TSP-induced synapses, although structurally normal and presynaptically active, are postsynaptically silent due to the lack of AMPA receptors (Christopherson et al., 2005), indicating the existence of other glia-derived signals involved in synapse formation. In fact, in cultured hippocampal neurons, a glia-derived neurotrophic factor GDNF enhances the pre- and postsynaptic adhesion by triggering the trans-homophilic interaction of its receptors GFRα1 localized at both pre- and postsynaptic sites (Ledda et al., 2007). Several other glia-derived factors have been shown to play critical roles in synaptogenesis. Astrocytes secrete extracellular molecules hevin and SPARC to regulate synapse formation in vitro and in vivo (Kucukdereli et al., 2011). Astrocytes also express a transmembrane adhesion protein, protocadherin-γ, serving as a local cue to promote synapse formation (Garrett and Weiner, 2009). TGF-β secreted from the NMJ glia acts together with the muscle-derived TGF-β to control synaptic growth (Fuentes-Medel et al., 2012). In a similar fashion, secretion of BDNF by vestibular supporting cells is required for synapse formation between hair cells and sensory organs (Gómez-Casati et al., 2010).Another important synaptic organizer is cerebellin (Cbln), a presynapse-derived complement protein, C1q-like family protein. In cbln1-null mice the number of parallel fibers (PF)–Purkinje synapses is dramatically reduced; the postsynaptic densities in the remaining synapses are larger than the apposite active zones (Hirai et al., 2005). Cbln was also found to regulate synaptic plasticity, as cbln1-null mice show impaired long-term depression in cerebellum (Hirai et al., 2005). These defects precisely resemble those in mice lacking a putative glutamate receptor, GluD2 (Kashiwabuchi et al., 1995; Kurihara et al., 1997), suggesting that Cbln1 and GluD2 function in synaptic differentiation through a common pathway. Interestingly, the C-terminal domain and N-terminal domains of GluD2 are indispensable for cerebella LTD and PF–Purkinje synaptic morphology, respectively (Kohda et al., 2007; Uemura et al., 2007; Kakegawa et al., 2008, 2009). Further studies suggested that Cbln1 directly binds to the N-terminal domain of GluD2 and recruits postsynaptic proteins by clustering GluD2 (Matsuda et al., 2010). Neurexin was recently reported as the presynaptic receptor of Cbln in promoting synaptogenesis (Uemura et al., 2010), which reinforces the understanding of Cbln-mediated trans-synaptic signaling: Cbln serves as a bi-directional synapse organizer by linking presynaptic neurexin and postsynaptic GluD2 (Fig. 4, right).Besides being required for synapse formation at early stages, genetic ablation of GluD2 in adult cerebellum leads to loss of PF–Purkinje synapses (Takeuchi et al., 2005), indicating that Cbln1–GluD2 signaling is also important for the maintenance of PF–Purkinje synapses. Chronic stimulation of neural activity decreases Cbln1 expression and diminishes the number of PF–Purkinje synapses (Iijima et al., 2009), suggesting the importance of Cbln1–GluD2 signaling for synaptic plasticity and homeostasis.Cbln subfamily proteins are widely expressed throughout the brain (Miura et al., 2006), suggesting that their synaptogenic roles may be wide spread in other regions of the brain. Cbln2 and 4 are also secreted proteins, whereas Cbln3 is retained in the cellular endomembrane system (Iijima et al., 2007). Cbln1 and 2, interacting with an isoform of presynaptic neurexin, induce synaptogenesis (Joo et al., 2011; Matsuda and Yuzaki, 2011). Notably, the cortical synapses induced by neurexin–Cbln signaling are preferentially inhibitory (Joo et al., 2011), distinguishing the effects of Cbln from neuroligin. GluD1 was recently found to be the postsynaptic receptor of Cbln1 and 2 in cortical neurons, mediating the differentiation of inhibitory presynapses (Yasumura et al., 2012). On the other side, Cbln4 selectively binds to the netrin receptor DCC in a netrin-displaceable manner (Fig. 4, right), suggesting a potential function of Cbln4 through DCC signaling pathway (Iijima et al., 2007). Intriguingly, C1q, although sharing similar structure with Cbln, serves an opposite role by regulating the synapse elimination: C1q released from retinal ganglion cells refines the retinogeniculate connections by eliminating unneeded synapses (Stevens et al., 2007).

Concluding remarks

Synapse development is regulated in multiple steps. Research over the last few years have uncovered many regulatory mechanisms on how trafficking of synaptic material is regulated and how scaffold proteins act with cytoskeleton networks and trans-synaptic signaling to instruct the synapse formation. Nevertheless, our understanding of the cellular and molecular mechanisms regulating synapse development is still incomplete. For example, how is the direction, speed, and amount of synaptic material being transported specified? How is a synapse’s size determined? How is synapse type and strength specified through adhesive and secreted trans-synaptic signaling? How do the redundant synapse-inducing pathways interact with each other? Given the rapidly emerging improvements of technologies, especially super-resolution microscopy and high-throughput genomics and proteomics, the synapse development field will likely rapidly evolve in the near future.  相似文献   

17.
This work contributes to unraveling the role of the phosphorylated pathway of serine (Ser) biosynthesis in Arabidopsis (Arabidopsis thaliana) by functionally characterizing genes coding for the first enzyme of this pathway, 3-phosphoglycerate dehydrogenase (PGDH). We identified two Arabidopsis plastid-localized PGDH genes (3-PGDH and EMBRYO SAC DEVELOPMENT ARREST9 [EDA9]) with a high percentage of amino acid identity with a previously identified PGDH. All three genes displayed a different expression pattern indicating that they are not functionally redundant. pgdh and 3-pgdh mutants presented no drastic visual phenotypes, but eda9 displayed delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of eda9 was complemented with an EDA9 complementary DNA under the control of a 35S promoter (Pro-35S:EDA9). However, this construct, which is poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in eda9.1eda9.1 Pro-35S:EDA9 was arrested at the polarized stage. Pollen from these lines lacked tryphine in the interstices of the exine layer, displayed shrunken and collapsed forms, and were unable to germinate when cultured in vitro. A metabolomic analysis of PGDH mutant and overexpressing plants revealed that all three PGDH family genes can regulate Ser homeostasis, with PGDH being quantitatively the most important in the process of Ser biosynthesis at the whole-plant level. By contrast, the essential role of EDA9 could be related to its expression in very specific cell types. We demonstrate the crucial role of EDA9 in embryo and pollen development, suggesting that the phosphorylated pathway of Ser biosynthesis is an important link connecting primary metabolism with development.Plant primary metabolism is a complex process where many interacting pathways must be finely coordinated and integrated in order to achieve proper plant development and acclimation to the environment. An example of such complexity is the biosynthesis of the amino acid l-Ser, which takes place in at least two different organelles and by different pathways. This amino acid is essential for the synthesis of proteins and other biomolecules needed for cell proliferation, including nucleotides and Ser-derived lipids, such as phosphatidylserine and sphingolipids. Additionally, d-Ser has been attributed a signaling function in male gametophyte-pistil communication (Michard et al., 2011).Despite the important role played by Ser in plants, the biological significance of the coexistence of several Ser biosynthetic pathways and how they interact to maintain amino acid homeostasis in cells is not yet understood. Three different Ser biosynthesis pathways have been described in plants (Kleczkowski and Givan, 1988; Ros et al., 2013; Fig. 1). One is the glycolate pathway, which takes place in mitochondria and is associated with photorespiration (Tolbert, 1980, 1997; Douce et al., 2001; Bauwe et al., 2010; Maurino and Peterhansel, 2010). In this pathway, two molecules of Gly are converted to one molecule of Ser in a reaction catalyzed by the Gly decarboxylase complex and Ser hydroxymethyltransferase (Fig. 1). Ser synthesis through the glycolate pathway is obtained in green tissues during daylight hours (Tolbert, 1980, 1985; Douce et al., 2001), suggesting that alternative Ser biosynthesis pathways may be required in the dark and/or in nonphotosynthetic organs. In this respect, Ser can be synthesized through two nonphotorespiratory pathways (Kleczkowski and Givan, 1988), the plastidial phosphorylated pathway (Ho et al., 1998, 1999a, 1999b; Ho and Saito, 2001) and the so-called glycerate pathway, which synthesizes Ser by the dephosphorylation of 3-phosphoglycerate (3-PGA; Kleczkowski and Givan, 1988; Fig. 1). This latter pathway includes the reverse sequence of the section of the oxidative photosynthetic carbon cycle linking 3-PGA to Ser (3-PGA-glycerate-hydroxypyruvate-Ser), these reactions being catalyzed by putative enzymes such as 3-PGA phosphatase, glycerate dehydrogenase, Ala-hydroxypyruvate aminotransferase, and Gly hydroxypyruvate aminotransferase. Although the existence of enzymatic activities of this pathway has been demonstrated (Kleczkowski and Givan, 1988), its functional significance is unknown and genes coding for the specific enzymes of the pathway have not been characterized to date.Open in a separate windowFigure 1.Schematic representation of Ser biosynthesis in plants. The enzymes participating in each Ser biosynthetic pathway are listed separately. Photorespiratory pathway (glycolate pathway): GDC, Gly decarboxylase; SHMT, Ser hydroxymethyltransferase. Glycerate pathway: PGAP, 3-phosphoglycerate phosphatase; GDH, glycerate dehydrogenase; AH-AT, Ala-hydroxypyruvate aminotransferase. Phosphorylated pathway: PSAT, 3-phosphoserine aminotransferase; PSP, 3-phosphoserine phosphatase. Abbreviations used for metabolites are as follows: 3-PHP, 3-phosphohydroxypyruvate; 3-PS, 3-phosphoserine; THF, tetrahydrofolate; 5,10-CH2-THF, 5,10-methylene-tetrahydrofolate. This figure is adapted from Cascales-Miñana et al. (2013).The plastidial phosphorylated pathway of serine biosynthesis (PPSB; Fig. 1), which is conserved in mammals and plants, synthesizes Ser via 3-phosphoserine utilizing 3-PGA as a precursor (Kleczkowski and Givan, 1988). Evidence for the existence of this pathway in plants stems from the isolation and characterization of its enzyme activities (Handford and Davies, 1958; Slaughter and Davies, 1968; Larsson and Albertsson, 1979; Walton and Woolhouse, 1986). The PPSB involves three enzymes catalyzing sequential reactions: 3-phosphoglycerate dehydrogenase (PGDH), 3-phosphoserine aminotransferase, and 3-phosphoserine phosphatase (PSP; Fig. 1). Genes coding for some isoforms of these enzymes have been cloned and biochemically characterized in Arabidopsis (Arabidopsis thaliana; Ho et al., 1998, 1999a, 1999b; Ho and Saito, 2001).In humans, the PPSB plays a crucial role in cell proliferation control and oncogenesis (Bachelor et al., 2011; Locasale et al., 2011; Pollari et al., 2011; Possemato et al., 2011). The functional significance of the PPSB in plants has recently been unraveled by providing evidence for the crucial role of PSP1, the last enzyme of the pathway in embryo, pollen, and root development (Cascales-Miñana et al., 2013). However, the PPSB still requires further characterization. In order to gain a complete understanding of the PPSB function in plants, precise molecular, metabolic, and genetic knowledge of all the enzymes and genes of the pathway is needed. In this work, we follow a gain- and loss-of-function approach in Arabidopsis to characterize a family of genes coding for putative isoforms of PGDH, the first enzyme of the PPSB. Here, we identify the essential gene of this family and provide evidence for its crucial function in embryo and pollen development.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号