首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luo K  Zhang H  Wang L  Yuan J  Lou Z 《The EMBO journal》2012,31(13):3008-3019
In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA damage. Sumoylated MDC1 is recognized and ubiquitinated by the SUMO-targeted E3 ubiquitin ligase RNF4. Mutation of the MDC1 Lys 1840 (K1840R) results in impaired CtIP, replication protein A, and Rad51 accumulation at sites of DNA damage and defective homologous recombination (HR). The HR defect caused by MDC1K1840R mutation could be rescued by 53BP1 downregulation. These results reveal the intricate dynamics governing the assembly and disassembly of DNA damage factors at sites of DNA damage for prompt response to DNA damage.  相似文献   

2.
《Cell reports》2023,42(2):112060
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

3.
由于体内外因素的影响,DNA损伤是生物生命周期中的常见现象,如果得不到及时的修复,DNA损伤的积累将导致基因组的不稳定及染色质的异常,并可能导致肿瘤的发生发展。SUMO化修饰是体内一个重要的蛋白质翻译后修饰,越来越多的研究发现SUMO化修饰与多个参与DNA损伤反应、维持基因组稳定的蛋白质相关,有可能参与肿瘤的发生。本文将阐述SUMO化修饰与DNA损伤修复的关系。  相似文献   

4.
The cellular DNA damage response (DDR) machinery that maintains genomic integrity and prevents severe pathologies, including cancer, is orchestrated by signaling through protein modifications. Protein ubiquitylation regulates repair of DNA double-strand breaks (DSBs), toxic lesions caused by various metabolic as well as environmental insults such as ionizing radiation (IR). Whereas several components of the DSB-evoked ubiquitylation cascade have been identified, including RNF168 and BRCA1 ubiquitin ligases, whose genetic defects predispose to a syndrome mimicking ataxia-telangiectasia and cancer, respectively, the identity of the apical E1 enzyme involved in DDR has not been established. Here, we identify ubiquitin-activating enzyme UBA1 as the E1 enzyme required for responses to IR and replication stress in human cells. We show that siRNA-mediated knockdown of UBA1, but not of another UBA family member UBA6, impaired formation of both ubiquitin conjugates at the sites of DNA damage and IR-induced foci (IRIF) by the downstream components of the DSB response pathway, 53BP1 and BRCA1. Furthermore, chemical inhibition of UBA1 prevented IRIF formation and severely impaired DSB repair and formation of 53BP1 bodies in G1, a marker of response to replication stress. In contrast, the upstream steps of DSB response, such as phosphorylation of histone H2AX and recruitment of MDC1, remained unaffected by UBA1 depletion. Overall, our data establish UBA1 as the apical enzyme critical for ubiquitylation-dependent signaling of both DSBs and replication stress in human cells, with implications for maintenance of genomic integrity, disease pathogenesis and cancer treatment.  相似文献   

5.
The role of p300 in DNA damage response is unclear. To understand how ATM-dependent phosphorylation of p300 affects its function in response to DNA damage, we present evidence that S106 of p300, which is phosphorylated by ATM, regulates stability of NBS1 and recruitment into damaged DNA, possibly leading to regulation of DNA repair. Non-phosphorylatable p300 (S106A) destabilized NBS1 and decreased NBS1–p300 interaction. The recruitment of NBS1 into damaged DNA was impaired in the presence of S106A. Also, a dominant negative p300 lacking enzymatic activity induced destabilization of NBS1, suggesting that its acetyltransferase is required for NBS1 stability. These results indicate that phosphorylation of p300 can regulate NBS1-mediated DNA damage response, and that these events occur in an acetylation-dependent manner.

Structured summary

MINT-8058074, MINT-8058083: p300 (uniprotkb:Q09472) physically interacts (MI:0915) with NBS1 (uniprotkb:O60934) by anti bait coimmunoprecipitation (MI:0006)MINT-8058111: p300 (uniprotkb:Q09472) and NBS1 (uniprotkb:O60934) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-8058657: p300 (uniprotkb:Q09472) physically interacts (MI:0915) with NBS1 (uniprotkb:O60934) by two hybrid (MI:0018)MINT-8058093: p300 (uniprotkb:Q09472) physically interacts (MI:0915) with NBS1 (uniprotkb:O60934) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

6.
Glioblastomas (GBMs) are highly lethal brain tumours with current therapies limited to palliation due to therapeutic resistance. We previously demonstrated that GBM stem cells (GSCs) display a preferential activation of DNA damage checkpoint and are relatively resistant to radiation. However, the molecular mechanisms underlying the preferential checkpoint response in GSCs remain undefined. Here, we show that L1CAM (CD171) regulates DNA damage checkpoint responses and radiosensitivity of GSCs through nuclear translocation of L1CAM intracellular domain (L1-ICD). Targeting L1CAM by RNA interference attenuated DNA damage checkpoint activation and repair, and sensitized GSCs to radiation. L1CAM regulates expression of NBS1, a critical component of the MRE11-RAD50-NBS1 (MRN) complex that activates ataxia telangiectasia mutated (ATM) kinase and early checkpoint response. Ectopic expression of NBS1 in GSCs rescued the decreased checkpoint activation and radioresistance caused by L1CAM knockdown, demonstrating that L1CAM signals through NBS1 to regulate DNA damage checkpoint responses. Mechanistically, nuclear translocation of L1-ICD mediates NBS1 upregulation via c-Myc. These data demonstrate that L1CAM augments DNA damage checkpoint activation and radioresistance of GSCs through L1-ICD-mediated NBS1 upregulation and the enhanced MRN-ATM-Chk2 signalling.  相似文献   

7.
泛素化修饰是真核生物细胞内重要的翻译后修饰类型,通过调节蛋白质活性、稳定性和亚细胞定位广泛参与细胞内各项信号传导与代谢过程,对维持正常生命活动具有重要意义。组蛋白作为染色质中主要的蛋白成分,与DNA复制转录、修复等行为密切相关,是研究翻译后修饰的热点。DNA损伤后,组蛋白泛素化修饰通过调节核小体结构、激活细胞周期检查点、影响修复因子的招募与装配等诸多途径参与损伤应答。同时,组蛋白泛素化修饰还能调节其他位点翻译后修饰,并通过这种串扰(crosstalk)作用调节DNA损伤应答。本文介绍了组蛋白泛素化修饰的主要位点和相关组分(包括E3连接酶、去泛素化酶与效应分子),以及这些修饰作用共同编译形成的信号网络在DNA损伤应答中的作用,最后总结了目前该领域研究所面临的一些问题,以期为科研人员进一步探索组蛋白密码在DNA损伤应答中的作用提供参考。  相似文献   

8.
Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells.1 Pedersen RT, Kruse T, Nilsson J, Oestergaard VH, Lisby M. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells. J Cell Biol 2015; 210:565-82; PMID:26283799; http://dx.doi.org/10.1083/jcb.201502107[Crossref], [PubMed], [Web of Science ®] [Google Scholar] Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.  相似文献   

9.
小分子泛素相关修饰物蛋白(small ubiquitin-related modifier protein,SUMO)化修饰是一种广泛存在的蛋白质翻译后修饰形式,存在于动物多个生理和病理过程中,并涉及复杂的信号通路调节过程,是细胞对应激反应的重要调节机制,并且越来越多的研究表明,SUMO化修饰在哺乳动物胚胎发育及器官发生过程中发挥重要作用。在胎儿发育过程中,SUMO化对于器官的形成及发育起着至关重要的作用。SUMO化途径的各组成成分(UBC9、SUMO1~3、PIAS、SENP1~7)在胚胎发育过程中协调胚泡与子宫间的对话、心脏发育以及颅面发育中都发挥着重要作用。在发育过程中SUMO化修饰一旦失调,则可能导致胚胎植入前缺陷、胚胎发育缺陷以及胚胎致死。本综述总结了SUMO化修饰的分子机制,以及SUMO化途径各个组成成分(SUMO、UBC9、PIAS、SENPs)在早期胚胎发育及后续器官发生中功能的最新进展,以望为后续的研究提供借鉴。  相似文献   

10.
The injurious consequences of ionizing radiation (IR) to normal human cells and the acquired radioresistance of cancer cells represent limitations to cancer radiotherapy. IR induces DNA damage response pathways that orchestrate cell cycle arrest, DNA repair or apoptosis such that irradiated cells are either repaired or eliminated. Concomitantly and independent of DNA damage, IR activates acid sphingomyelinase (ASMase), which generates ceramide, thereby promoting radiation-induced apoptosis. However, ceramide can also be metabolized to sphingosine-1-phosphate (S1P), which acts paradoxically as a radioprotectant. Thus, sphingolipid metabolism represents a radiosensitivity pivot point, a notion supported by genetic evidence in IR-resistant cancer cells. S1P lyase (SPL) catalyzes the irreversible degradation of S1P in the final step of sphingolipid metabolism. We show that SPL modulates the kinetics of DNA repair, speed of recovery from G2 cell cycle arrest and the extent of apoptosis after IR. SPL acts through a novel feedback mechanism that amplifies stress-induced ceramide accumulation, and downregulation/inhibition of either SPL or ASMase prevents premature cell cycle progression and mitotic death. Further, oral administration of an SPL inhibitor to mice prolonged their survival after exposure to a lethal dose of total body IR. Our findings reveal SPL to be a regulator of ASMase, the G2 checkpoint and DNA repair and a novel target for radioprotection.  相似文献   

11.
12.
Andersen PL  Xu F  Xiao W 《Cell research》2008,18(1):162-173
In addition to well-defined DNA repair pathways, all living organisms have evolved mechanisms to avoid cell death caused by replication fork collapse at a site where replication is blocked due to disruptive covalent modifications of DNA. The term DNA damage tolerance (DDT) has been employed loosely to include a collection of mechanisms by which cells survive replication-blocking lesions with or without associated genomic instability. Recent genetic analyses indicate that DDT in eukaryotes, from yeast to human, consists of two parallel pathways with one being error-free and another highly mutagenic. Interestingly, in budding yeast, these two pathways are mediated by sequential modifications of the proliferating cell nuclear antigen (PCNA) by two ubiquitination complexes Rad6-Rad18 and Mms2-Ubc13-Rad5. Damage-induced monoubiquitination of PCNA by Rad6-Rad18 promotes translesion synthesis (TLS) with increased mutagenesis, while subsequent polyubiquitination of PCNA at the same K164 residue by Mms2-Ubc13-Rad5 promotes error-free lesion bypass. Data obtained from recent studies suggest that the above mechanisms are conserved in higher eukaryotes. In particular, mammals contain multiple specialized TLS polymerases. Defects in one of the TLS polymerases have been linked to genomic instability and cancer.  相似文献   

13.
Human cells have evolved elaborate mechanisms for responding to DNA damage to maintain genome stability and prevent carcinogenesis. For instance, the cell cycle can be arrested at different stages to allow time for DNA repair. The APC/CCdh1 ubiquitin ligase mainly regulates mitotic exit but is also implicated in the DNA damage‐induced G2 arrest. However, it is currently unknown whether APC/CCdh1 also contributes to DNA repair. Here, we show that Cdh1 depletion causes increased levels of genomic instability and enhanced sensitivity to DNA‐damaging agents. Using an integrated proteomics and bioinformatics approach, we identify CtIP, a DNA‐end resection factor, as a novel APC/CCdh1 target. CtIP interacts with Cdh1 through a conserved KEN box, mutation of which impedes ubiquitylation and downregulation of CtIP both during G1 and after DNA damage in G2. Finally, we find that abrogating the CtIP–Cdh1 interaction results in delayed CtIP clearance from DNA damage foci, increased DNA‐end resection, and reduced homologous recombination efficiency. Combined, our results highlight the impact of APC/CCdh1 on the maintenance of genome integrity and show that this is, at least partially, achieved by controlling CtIP stability in a cell cycle‐ and DNA damage‐dependent manner.  相似文献   

14.
PTEN functions as a guardian of the genome through multiple mechanisms. We have previously established that PTEN maintains the structural integrity of chromosomes. In this report, we demonstrate a fundamental role of PTEN in controlling chromosome inheritance to prevent gross genomic alterations. Disruption of PTEN or depletion of PTEN protein phosphatase activity causes abnormal chromosome content, manifested by enlarged or polyploid nuclei. We further identify polo-like kinase 1 (PLK1) as a substrate of PTEN phosphatase. PTEN can physically associate with PLK1 and reduce PLK1 phosphorylation in a phosphatase-dependent manner. We show that PTEN deficiency leads to PLK1 phosphorylation and that a phospho-mimicking PLK1 mutant causes polyploidy, imitating functional deficiency of PTEN phosphatase. Inhibition of PLK1 activity or overexpression of a non-phosphorylatable PLK1 mutant reduces the polyploid cell population. These data reveal a new mechanism by which PTEN controls genomic stability during cell division.  相似文献   

15.
Double-strand breaks (DSBs) in budding yeast trigger activation of DNA damage checkpoints, allowing repair to occur. Although resection is necessary for initiating damage-induced cell cycle arrest in G2, no role has been assigned to it in the activation of G1 checkpoint. Here we demonstrate for the first time that the resection proteins Sgs1 and Exo1 are required for efficient G1 checkpoint activation. We find in G1 arrested cells that histone H2A phosphorylation in response to ionizing radiation is independent of Sgs1 and Exo1. In contrast, these proteins are required for damage-induced recruitment of Rfa1 to the DSB sites, phosphorylation of the Rad53 effector kinase, cell cycle arrest and RNR3 expression. Checkpoint activation in G1 requires the catalytic activity of Sgs1, suggesting that it is DNA resection mediated by Sgs1 that stimulates the damage response pathway rather than protein–protein interactions with other DDR proteins. Together, these results implicate DNA resection, which is thought to be minimal in G1, as necessary for activation of the G1 checkpoint.  相似文献   

16.
The ChlR1 DNA helicase is mutated in Warsaw breakage syndrome characterized by developmental anomalies, chromosomal breakage, and sister chromatid cohesion defects. However, the mechanism by which ChlR1 preserves genomic integrity is largely unknown. Here, we describe the roles of ChlR1 in DNA replication recovery. We show that ChlR1 depletion renders human cells highly sensitive to cisplatin; an interstrand-crosslinking agent that causes stalled replication forks. ChlR1 depletion also causes accumulation of DNA damage in response to cisplatin, leading to a significant delay in resolution of DNA damage. We also report that ChlR1-depleted cells display defects in the repair of double-strand breaks induced by the I-PpoI endonuclease and bleomycin. Furthermore, we demonstrate that ChlR1-depeleted cells show significant delays in replication recovery after cisplatin treatment. Taken together, our results indicate that ChlR1 plays an important role in efficient DNA repair during DNA replication, which may facilitate efficient establishment of sister chromatid cohesion.  相似文献   

17.
Poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) acts as a DNA damage sensor. It recognizes DNA damage and facilitates DNA repair by recruiting DNA repair machinery to damage sites. Recent studies reported that PARP-1 also plays an important role in DNA replication by recognizing the unligated Okazaki fragments and controlling the speed of fork elongation. On the other hand, emerging evidence reveals that excessive activation of PARP-1 causes chromatin DNA fragmentation and triggers an intrinsic PARP-1-dependent cell death program designated parthanatos, which can be blocked by genetic deletion or pharmacological inhibition of PARP-1. Therefore, PARP-1 plays an essential role in maintaining genomic stability by either facilitating DNA repair/replication or triggering DNA fragmentation to kill cells. A group of structure-specific nucleases is crucial for executing DNA incision and fragmentation following PARP-1 activation. In this review, we will discuss how PARP-1 coordinates with its associated nucleases to maintain genomic integrity and control the decision of cell life and death.  相似文献   

18.
ObjectivesDNA damages pose threats to haematopoietic stem cells (HSC) maintenance and haematopoietic system homeostasis. Quiescent HSCs in adult mouse bone marrow are resistant to DNA damage, while human umbilical cord blood‐derived proliferative HSCs are prone to cell death upon ionizing radiation. Murine embryonic HSCs proliferate in foetal livers and divide symmetrically to generate HSC pool. How murine embryonic HSCs respond to DNA damages is not well‐defined.Materials and methodsMice models with DNA repair molecule Nbs1 or Nbs1/p53 specifically deleted in embryonic HSCs were generated. FACS analysis, in vitro and in vivo HSC differentiation assays, qPCR, immunofluorescence and Western blotting were used to delineate roles of Nbs1‐p53 signaling in HSCs and haematopoietic progenitors.ResultsNbs1 deficiency results in persistent DNA breaks in embryonic HSCs, compromises embryonic HSC development and finally results in mouse perinatal lethality. The persistent DNA breaks in Nbs1 deficient embryonic HSCs render cell cycle arrest, while driving a higher rate of cell death in haematopoietic progenitors. Although Nbs1 deficiency promotes Atm‐Chk2‐p53 axis activation in HSCs and their progenies, ablation of p53 in Nbs1 deficient HSCs accelerates embryonic lethality.ConclusionsOur study discloses that DNA double‐strand repair molecule Nbs1 is essential in embryonic HSC development and haematopoiesis. Persistent DNA damages result in distinct cell fate in HSCs and haematopoietic progenitors. Nbs1 null HSCs tend to be maintained through cell cycle arrest, while Nbs1 null haematopoietic progenitors commit cell death. The discrepancies are mediated possibly by different magnitude of p53 signaling.  相似文献   

19.
20.
Metformin (dimethyl-biguanide) is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays) and in mice (micronucleus assays). Concentrations of 114.4 μg/mL and 572 μg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 μg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号