首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Analysis of the enantiomers of rosiglitazone in a PPARγ binding assay suggests that the (S)-(−)-isomer is responsible for the antidiabetic activity.  相似文献   

5.
6.
The discovery and optimization of a series of potent PPARδ full agonists with partial agonistic activity against PPARγ is described.  相似文献   

7.
8.
Qiang L  Accili D 《Cell》2012,148(3):397-398
Peptide hormone fibroblast growth factor-21 (FGF21) has insulin-mimetic properties. Dutchak et?al. now suggest that FGF21 also acts in an autocrine fashion in adipocytes and is required to mediate effects of the PPARγ agonist class of antidiabetic drugs. Does this new property improve FGF21's fledgling clinical prospects or endorse a clinical resuscitation of PPARγ agonists?  相似文献   

9.
10.
Adiponectin is an important insulin‐sensitizing adipokine with multiple beneficial effects on obesity‐associated medical complications. It is secreted from adipocytes into circulation as high, medium, and low molecular weight forms (HMW, MMW, and LMW). Each oligomeric form of adiponectin exerts non‐overlapping biological functions, with the HMW oligomer possessing the most potent insulin‐sensitizing activity. In this study, we reported that emodin, a natural product and active ingredient of various Chinese herbs, activates AMPK in both 3T3‐L1 adipocytes and 293T cells. Activation of AMPK by emodin promotes the assembly of HMW adiponectin and increases the ratio of HMW adiponectin to total adiponectin in 3T1‐L1 adipocytes. Emodin might activate AMPK by an indirect mechanism similar to berberine. We also found that emodin activates PPARγ and promotes differentiation and adiponectin expression during differentiation of 3T3‐L1 preadipocytes. Therefore, emodin is a novel AMPK activator with PPARγ‐agonist activity. Our results demonstrate that the effects of emodin on adiponectin expression and multimerization are the ultimate effects resulting from both AMPK activation and PPARγ activation. The dual‐activity makes emodin or the derivatives potential drug candidates for the treatment of type 2 diabetes and other obesity‐related metabolic diseases. J. Cell. Biochem. 113: 3547–3558, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists used to treat type 2 diabetes. TZD treatment induces side effects such as peripheral fluid retention, often leading to discontinuation of therapy. Previous studies have shown that PPARγ activation by TZD enhances the expression or function of the epithelial sodium channel (ENaC) through different mechanisms. However, the effect of TZDs on ENaC activity is not clearly understood. Here, we show that treating Xenopus laevis oocytes expressing ENaC and PPARγ with the TZD rosiglitazone (RGZ) produced a twofold increase of amiloride-sensitive sodium current (Iam), as measured by two-electrode voltage clamp. RGZ-induced ENaC activation was PPARγ-dependent since the PPARγ antagonist GW9662 blocked the activation. The RGZ-induced Iam increase was not mediated through direct serum- and glucocorticoid-regulated kinase (SGK1)-dependent phosphorylation of serine residue 594 on the human ENaC α-subunit but by the diminution of ENaC ubiquitination through the SGK1/Nedd4-2 pathway. In accordance, RGZ increased the activity of ENaC by enhancing its cell surface expression, most probably indirectly mediated through the increase of SGK1 expression.  相似文献   

12.
13.
PPARγ与代谢性疾病   总被引:4,自引:0,他引:4  
过氧化物酶体增殖物激活受体γ(PPARγ)是一种可由多种脂肪酸及其衍生物激活的核转录因子,在机体糖脂代谢中起重要调节作用,一些可作为其配体的合成化合物现已应用于Ⅱ型糖尿病的临床治疗。该简单介绍PPARγ作用的分子机制以及PPARγ与一些代谢性疾病的关系。  相似文献   

14.
Interferon (IFN)-γ is a cytokine known for its immunomodulatory and anti-proliferative action. In the liver, IFN-γ can induce hepatocyte apoptosis or inhibit hepatocyte cell cycle progression. This article reviews recent mechanistic reports that describe how IFN-γ may direct the fate of hepatocytes either towards apoptosis or a cell cycle arrest. This review also describes a probable role for IFN-γ in modulating hepatocyte fate during liver regeneration, transplantation, hepatitis, fibrosis and hepatocellular carcinoma, and highlights promising areas of research that may lead to the development of IFN-γ as a therapy to enhance recovery from liver disease.  相似文献   

15.

Background

Carotenoids have been found to play roles in the prevention and therapy of some cancers which PPARγ was also discovered to be involved in. The present studies were directed to determine the inhibitory effects of carotenoids in combination with rosiglitazone, a synthetic PPARγ agonist, on K562 cell proliferation and elucidate the contribution of PPARγ-dependent pathway to cell proliferation suppression.

Methods

The effects of carotenoid and rosiglitazone combination on K562 cell proliferation were evaluated by trypan blue dye exclusion assay and MTT assay. When PPARγ has been inhibited by GW9662 and siRNA, cycle-related regulator expression in K562 cells treated with carotenoid and rosiglitazone combination was analyzed by Western blotting.

Results

Rosiglitazone inhibited K562 cell proliferation and augmented the inhibitory effects of carotenoids on the cell proliferation greatly. Specific PPARγ inhibition attenuated the cell growth suppression induced by carotenoid and rosiglitazone combination. GW9662 pre-treatment attenuated the enhanced up-regulation of PPARγ expression caused by the combination treatment. Moreover, GW9662 and PPARγ siRNA also significantly attenuated the up-regulation of p21 and down-regulation of cyclin D1 caused by carotenoids and rosiglitazone.

Conclusions

PPARγ signaling pathway, via stimulating p21 and inhibiting cyclin D1, may play an important role in the anti-proliferative effects of carotenoid and rosiglitazone combination on K562 cells.

General significance

Carotenoids in combination with rosiglitazone are hopeful to provide attractive dietary or supplementation-based and pharmaceutical strategies to treat cancer diseases.  相似文献   

16.
过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors,PPARs)是核受体超家族中的一类配体依赖的核转录因子,其中两种重要的亚型PPARα和PPARγ在脂肪细胞分化、能量代谢和炎症过程中都发挥重要作用。研究显示,PPARα和PPARγ的配体激动剂不仅可以改善包括糖尿病、高血压和肥胖等在内的胰岛素抵抗综合征,而且还可以通过作用于血管壁从而减缓动脉粥样硬化的进程。本文将就PPARα和PPARγ及其双激动剂与动脉粥样硬化发病机制和治疗的相关研究进展进行概括介绍。  相似文献   

17.
目的研究PPARα激活后对PPARγ诱导小鼠脂肪肝的影响。方法以4~5周龄C57BL/6J小鼠为模型,实验分为4组:正常饮食组;0.125%Wy-14,643处理组;PPARγ腺病毒(Ad/PPARγ)注射组;先给予0.125%Wy-14,643饮食再注射Ad/PPARγ组。实验结束时,收集肝脏组织称重、照相,HE、油红O染色观察PPARα激活后对PPARγ诱导肝脏脂肪变性的影响。结果野生型小鼠给予PPARα激动剂Wy-14,643处理8 d,与对照组相比,处理组小鼠肝脏明显增大,呈现过氧化物酶体增殖反应;野生型小鼠给予Ad/PPARγ5 d,小鼠肝脏显著增大,出现脂肪肝;给予PPARα激动剂Wy-14,643 3 d,再给予Ad/PPARγ5 d,小鼠肝脏增大更加显著,HE染色、油红O染色结果显示小鼠肝脏脂肪变性明显减轻。结论激活PPARα能够缓解PPARγ诱导的小鼠肝脏脂肪变,为脂肪肝的预防和治疗提供了新的研究思路和靶点。  相似文献   

18.
19.
过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma,PPARγ)是一种配体依赖性核转录因子,它具有调控细胞分化、脂肪代谢、糖代谢及炎症等多种生物学功能.机体对PPARγ转录活性的调控方式是多种多样的,包括蛋白表达水平、配体以及转录辅助因子等不同层次上的调控.近年来众多证据揭示,蛋白翻译后修饰(posttranslational modifications,PTMs)是机体调节PPARγ转录活性的另一重要方式.目前,已报道的PPARγ翻译后修饰包括磷酸化、泛素化、SUMO化和亚硝基化等,它们能够改变蛋白构象、调控蛋白相互作用、改变受体与配体间的亲和力,从而调控PPARγ下游基因的转录.重要的是,PPARγ的翻译后修饰与一些疾病如糖尿病、动脉粥样硬化、肿瘤等密切相关.本文将主要围绕PPARγ的各种翻译后修饰及其在疾病的发生、发展和治疗中的意义作一综述.  相似文献   

20.
PPARγ变异与复杂疾病   总被引:1,自引:0,他引:1  
姬森林  黄青阳 《遗传》2006,28(8):993-1001
过氧化物酶体增殖激活受体γ(PPARγ)是核激素受体超家族成员。PPARγ基因主要表达于脂肪组织,促进脂肪细胞分化,调控多种脂肪细胞分泌的蛋白质因子基因的表达。它也是糖尿病治疗药物噻唑烷二酮类化合物(TZDs)作用的靶分子。PPARγ的常见多态性影响胰腺β细胞功能,导致胰岛素分泌及外周组织对胰岛素敏感性的改变。它与2型糖尿病、肥胖、心血管疾病、癌症的发病风险相关联,阐明PPARγ的作用机制对复杂疾病的诊断、预防和治疗具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号