首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Forty-five different point mutations in POLG, the gene encoding the catalytic subunit of the human mitochondrial DNA polymerase (pol γ), cause the early onset mitochondrial DNA depletion disorder, Alpers syndrome. Sequence analysis of the C-terminal polymerase region of pol γ revealed a cluster of four Alpers mutations at highly conserved residues in the thumb subdomain (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) and two Alpers mutations at less conserved positions in the adjacent palm subdomain (Q879H, c.2637g→t and T885S, c.2653a→t). Biochemical characterization of purified, recombinant forms of pol γ revealed that Alpers mutations in the thumb subdomain reduced polymerase activity more than 99% relative to the wild-type enzyme, whereas the palm subdomain mutations retained 50–70% wild-type polymerase activity. All six mutant enzymes retained physical and functional interaction with the pol γ accessory subunit (p55), and none of the six mutants exhibited defects in misinsertion fidelity in vitro. However, differential DNA binding by these mutants suggests a possible orientation of the DNA with respect to the polymerase during catalysis. To our knowledge this study represents the first structure-function analysis of the thumb subdomain in pol γ and examines the consequences of mitochondrial disease mutations in this region.As the only DNA polymerase found in animal cell mitochondria, DNA polymerase γ (pol γ)3 bears sole responsibility for DNA synthesis in all replication and repair transactions involving mitochondrial DNA (1, 2). Mammalian cell pol γ is a heterotrimeric complex composed of one catalytic subunit of 140 kDa (p140) and two 55-kDa accessory subunits (p55) that form a dimer (3). The catalytic subunit contains an N-terminal exonuclease domain connected by a linker region to a C-terminal polymerase domain. Whereas the exonuclease domain contains essential motifs I, II, and III for its activity, the polymerase domain comprising the thumb, palm, and finger subdomains contains motifs A, B, and C that are crucial for polymerase activity. The catalytic subunit is a family A DNA polymerase that includes bacterial pol I and T7 DNA polymerase and possesses DNA polymerase, 3′ → 5′ exonuclease, and 5′-deoxyribose phosphate lyase activities (for review, see Refs. 1 and 2). The 55-kDa accessory subunit (p55) confers processive DNA synthesis and tight binding of the pol γ complex to DNA (4, 5).Depletion of mtDNA as well as the accumulation of deletions and point mutations in mtDNA have been observed in several mitochondrial disorders (for review, see Ref. 6). mtDNA depletion syndromes are caused by defects in nuclear genes responsible for replication and maintenance of the mitochondrial genome (7). Mutation of POLG, the gene encoding the catalytic subunit of pol γ, is frequently involved in disorders linked to mutagenesis of mtDNA (8, 9). Presently, more than 150 point mutations in POLG are linked with a wide variety of mitochondrial diseases, including the autosomal dominant (ad) and recessive forms of progressive external ophthalmoplegia (PEO), Alpers syndrome, parkinsonism, ataxia-neuropathy syndromes, and male infertility (tools.niehs.nih.gov/polg) (9).Alpers syndrome, a hepatocerebral mtDNA depletion disorder, and myocerebrohepatopathy are rare heritable autosomal recessive diseases primarily affecting young children (1012). These diseases generally manifest during the first few weeks to years of life, and symptoms gradually develop in a stepwise manner eventually leading to death. Alpers syndrome is characterized by refractory seizures, psychomotor regression, and hepatic failure (11, 12). Mutation of POLG was first linked to Alpers syndrome in 2004 (13), and to date 45 different point mutations in POLG (18 localized to the polymerase domain) are associated with Alpers syndrome (9, 14, 15). However, only two Alpers mutations (A467T and W748S, both in the linker region) have been biochemically characterized (16, 17).During the initial cloning and sequencing of the human, Drosophila, and chicken pol γ genes, we noted a highly conserved region N-terminal to motif A in the polymerase domain that was specific to pol γ (18). This region corresponds to part of the thumb subdomain that tracks DNA into the active site of both Escherichia coli pol I and T7 DNA polymerase (1921). A high concentration of disease mutations, many associated with Alpers syndrome, is found in the thumb subdomain.Here we investigated six mitochondrial disease mutations clustered in the N-terminal portion of the polymerase domain of the enzyme (Fig. 1A). Four mutations (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) reside in the thumb subdomain and two (Q879H, c.2637g→t and T885S, c.2653a→t) are located in the palm subdomain. These mutations are associated with Alpers, PEO, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), ataxia-neuropathy syndrome, Leigh syndrome, and myocerebrohepatopathy (
POLG mutationDiseaseGeneticsReference
G848SAlpers syndromeIn trans with A467T, Q497H, T251I-P587L, or W748S-E1143G in Alpers syndrome15, 35, 4350
Leigh syndromeIn trans with R232H in Leigh syndrome49
MELASIn trans with R627Q in MELAS38
PEO with ataxia-neuropathyIn trans with G746S and E1143G in PEO with ataxia50
PEOIn trans with T251I and P587L in PEO51, 52
T851AAlpers syndromeIn trans with R1047W48, 53
In trans with H277C
R852CAlpers syndromeIn trans with A467T14, 48, 50
In cis with G11D and in trans with W748S-E1143G or A467T
Ataxia-neuropathyIn trans with G11D-R627Q15
R853QMyocerebrohepatopathyIn trans with T251I-P587L15
Q879HAlpers syndrome with valproate-induced hepatic failureIn cis with E1143G and in trans with A467T-T885S35, 54
T885SAlpers syndrome with valproate-induced hepatic failureIn cis with A467T and in trans with Q879H-E1143G35, 54
Open in a separate windowOpen in a separate windowFIGURE 1.POLG mutations characterized in this study. A, the location of the six mutations characterized is shown in red in the primary sequence of pol γ. Four mutations, the G848S, T851A, R852C, and R853Q, are located in the thumb domain, whereas two mutations, the Q879H and T885S, are in the palm domain of the polymerase region. B, sequence alignment of pol γ from yeast to humans. The amino acids characterized in this study are shown in red. Yellow-highlighted amino acids are highly conserved, and blue-highlighted amino acids are moderately conserved.  相似文献   

3.
Rare Primary Mitochondrial DNA Mutations and Probable Synergistic Variants in Leber's Hereditary Optic Neuropathy     
A Achilli  L Iommarini  A Olivieri  M Pala  B Hooshiar Kashani  P Reynier  C La Morgia  ML Valentino  R Liguori  F Pizza  P Barboni  F Sadun  AM De Negri  M Zeviani  H Dollfus  A Moulignier  G Ducos  C Orssaud  D Bonneau  V Procaccio  B Leo-Kottler  S Fauser  B Wissinger  P Amati-Bonneau  A Torroni  V Carelli 《PloS one》2012,7(8):e42242

Background

Leber’s hereditary optic neuropathy (LHON) is a maternally inherited blinding disorder, which in over 90% of cases is due to one of three primary mitochondrial DNA (mtDNA) point mutations (m.11778G>A, m.3460G>A and m.14484T>C, respectively in MT-ND4, MT-ND1 and MT-ND6 genes). However, the spectrum of mtDNA mutations causing the remaining 10% of cases is only partially and often poorly defined.

Methodology/Principal Findings

In order to improve such a list of pathological variants, we completely sequenced the mitochondrial genomes of suspected LHON patients from Italy, France and Germany, lacking the three primary common mutations. Phylogenetic and conservation analyses were performed. Sixteen mitochondrial genomes were found to harbor at least one of the following nine rare LHON pathogenic mutations in genes MT-ND1 (m.3700G>A/p.A132T, m.3733G>A-C/p.E143K-Q, m.4171C>A/p.L289M), MT-ND4L (m.10663T>C/p.V65A) and MT-ND6 (m.14459G>A/p.A72V, m.14495A>G/p.M64I, m.14482C>A/p.L60S, and m.14568C>T/p.G36S). Phylogenetic analyses revealed that these substitutions were due to independent events on different haplogroups, whereas interspecies comparisons showed that they affected conserved amino acid residues or domains in the ND subunit genes of complex I.

Conclusions/Significance

Our findings indicate that these nine substitutions are all primary LHON mutations. Therefore, despite their relative low frequency, they should be routinely tested for in all LHON patients lacking the three common mutations. Moreover, our sequence analysis confirms the major role of haplogroups J1c and J2b (over 35% in our probands versus 6% in the general population of Western Europe) and other putative synergistic mtDNA variants in LHON expression.  相似文献   

4.
Mitochondrial DNA Mutations and Pathogenesis   总被引:26,自引:0,他引:26  
Eric A. Schon  Eduardo Bonilla  Salvatore DiMauro 《Journal of bioenergetics and biomembranes》1997,29(2):131-149
Approximately three years ago, this journal published a review on the clinical and molecular analysis of mitochondrial encephalomyopathies, with emphasis on defects in mitochondrial DNA (mtDNA). At that time, approximately 30 point mutations associated with a variety of maternally-inherited (or rarely, sporadic) disorders had been described. Since that time, almost twenty new pathogenic mtDNA point mutations have been described, and the pace of discovery of such mutations shows no signs of abating. This accumulating body of data has begun to reveal some patterns that may be relevant to pathogenesis.  相似文献   

5.
Mitochondrial Disease: Mutations and Mechanisms   总被引:8,自引:0,他引:8  
McKenzie M  Liolitsa D  Hanna MG 《Neurochemical research》2004,29(3):589-600
The mitochondrial diseases encompass a diverse group of disorders that can exhibit various combinations of clinical features. Defects in mitochondrial DNA (mtDNA) have been associated with these diseases, and studies have been able to assign biochemical defects. Deficiencies in mitochondrial oxidative phosphorylation appear to be the main pathogenic factors, although recent studies suggest that other mechanisms are involved. Reactive oxygen species (ROS) generation has been implicated in a wide variety of neurodegenerative diseases, and mitochondrial ROS generation may be an important factor in mitochondrial disease pathogenesis. Altered apoptotic signaling as a consequence of defective mitochondrial function has also been observed in both in vitro and in vivo disease models. Our current understanding of the contribution of these various mechanisms to mitochondrial disease pathophysiology will be discussed.  相似文献   

6.
Yeast Cells Expressing the Human Mitochondrial DNA Polymerase Reveal Correlations between Polymerase Fidelity and Human Disease Progression     
Yufeng Qian  Aashiq H. Kachroo  Christopher M. Yellman  Edward M. Marcotte  Kenneth A. Johnson 《The Journal of biological chemistry》2014,289(9):5970-5985
Mutations in the human mitochondrial polymerase (polymerase-γ (Pol-γ)) are associated with various mitochondrial disorders, including mitochondrial DNA (mtDNA) depletion syndrome, Alpers syndrome, and progressive external opthamalplegia. To correlate biochemically quantifiable defects resulting from point mutations in Pol-γ with their physiological consequences, we created “humanized” yeast, replacing the yeast mtDNA polymerase (MIP1) with human Pol-γ. Despite differences in the replication and repair mechanism, we show that the human polymerase efficiently complements the yeast mip1 knockouts, suggesting common fundamental mechanisms of replication and conserved interactions between the human polymerase and other components of the replisome. We also examined the effects of four disease-related point mutations (S305R, H932Y, Y951N, and Y955C) and an exonuclease-deficient mutant (D198A/E200A). In haploid cells, each mutant results in rapid mtDNA depletion, increased mutation frequency, and mitochondrial dysfunction. Mutation frequencies measured in vivo equal those measured with purified enzyme in vitro. In heterozygous diploid cells, wild-type Pol-γ suppresses mutation-associated growth defects, but continuous growth eventually leads to aerobic respiration defects, reduced mtDNA content, and depolarized mitochondrial membranes. The severity of the Pol-γ mutant phenotype in heterozygous diploid humanized yeast correlates with the approximate age of disease onset and the severity of symptoms observed in humans.  相似文献   

7.
Are Mitochondrial DNA Variants Selectively Non-Neutral?   总被引:1,自引:0,他引:1       下载免费PDF全文
R. S. SINGH  L. R. HALE 《Genetics》1990,124(4):995-997
  相似文献   

8.
Length Mutations in Human Mitochondrial DNA   总被引:42,自引:8,他引:42  
R. L. Cann  A. C. Wilson 《Genetics》1983,104(4):699-711
By high-resolution, restriction mapping of mitochondrial DNAs purified from 112 human individuals, we have identified 14 length variants caused by small additions and deletions (from about 6 to 14 base pairs in length). Three of the 14 length differences are due to mutations at two locations within the D loop, whereas the remaining 11 occur at seven sites that are probably within other noncoding sequences and at junctions between coding sequences. In five of the nine regions of length polymorphism, there is a sequence of five cytosines in a row, this sequence being comparatively rare in coding DNA. Phylogenetic analysis indicates that, in most of the polymorphic regions, a given length mutation has arisen several times independently in different human lineages. The average rate at which length mutations have been arising and surviving in the human species is estimated to be many times higher for noncoding mtDNA than for noncoding nuclear DNA. The mystery of why vertebrate mtDNA is more prone than nuclear DNA to evolve by point mutation is now compounded by the discovery of a similar bias toward rapid evolution by length mutation.  相似文献   

9.
Marek''s Disease Herpesvirus-Induced DNA Polymerase   总被引:4,自引:5,他引:4       下载免费PDF全文
John A. Boezi  Lucy F. Lee  Robert W. Blakesley  Mark Koenig    Howard C. Towle 《Journal of virology》1974,14(5):1209-1219
  相似文献   

10.
A Massively Parallel Pipeline to Clone DNA Variants and Examine Molecular Phenotypes of Human Disease Mutations     
Xiaomu Wei  Jishnu Das  Robert Fragoza  Jin Liang  Francisco M. Bastos de Oliveira  Hao Ran Lee  Xiujuan Wang  Matthew Mort  Peter D. Stenson  David N. Cooper  Steven M. Lipkin  Marcus B. Smolka  Haiyuan Yu 《PLoS genetics》2014,10(12)
Understanding the functional relevance of DNA variants is essential for all exome and genome sequencing projects. However, current mutagenesis cloning protocols require Sanger sequencing, and thus are prohibitively costly and labor-intensive. We describe a massively-parallel site-directed mutagenesis approach, “Clone-seq”, leveraging next-generation sequencing to rapidly and cost-effectively generate a large number of mutant alleles. Using Clone-seq, we further develop a comparative interactome-scanning pipeline integrating high-throughput GFP, yeast two-hybrid (Y2H), and mass spectrometry assays to systematically evaluate the functional impact of mutations on protein stability and interactions. We use this pipeline to show that disease mutations on protein-protein interaction interfaces are significantly more likely than those away from interfaces to disrupt corresponding interactions. We also find that mutation pairs with similar molecular phenotypes in terms of both protein stability and interactions are significantly more likely to cause the same disease than those with different molecular phenotypes, validating the in vivo biological relevance of our high-throughput GFP and Y2H assays, and indicating that both assays can be used to determine candidate disease mutations in the future. The general scheme of our experimental pipeline can be readily expanded to other types of interactome-mapping methods to comprehensively evaluate the functional relevance of all DNA variants, including those in non-coding regions.  相似文献   

11.
Role of Histidine 932 of the Human Mitochondrial DNA Polymerase in Nucleotide Discrimination and Inherited Disease     
Dipanwita Batabyal  Jessica L. McKenzie  Kenneth A. Johnson 《The Journal of biological chemistry》2010,285(44):34191-34201
The human mitochondrial DNA polymerase (pol γ) is nuclearly encoded and is solely responsible for the replication and repair of the mitochondrial genome. The progressive accumulation of mutations within the mitochondrial genome is thought to be related to aging, and mutations in the pol γ gene are responsible for numerous heritable disorders including progressive external opthalmoplegia, Alpers syndrome, and parkinsonism. Here we investigate the kinetic effect of H932Y, a mutation associated with opthalmoplegia. Mutations H932Y and H932A reduce the specificity constant governing correct nucleotide incorporation 150- and 70-fold, respectively, without significantly affecting fidelity of incorporation or the maximum rate of incorporation. However, this leads to only a 2-fold reduction in rate of incorporation at a physiological nucleotide concentration (∼100 μm). Surprisingly, incorporation of T:T or C:T mismatches catalyzed by either H932Y or H932A mutants was followed by slow pyrophosphate release (or fast pyrophosphate rebinding). Also, H932Y readily catalyzed incorporation of multiple mismatches, which may have a profound physiological impact over time. His-932 is thought to contact the β-phosphate of the incoming nucleotide, so it is perhaps surprising that H932Y appears to slow rather than accelerate pyrophosphate release.  相似文献   

12.
Mitochondrial DNA Mutations Induce Mitochondrial Dysfunction,Apoptosis and Sarcopenia in Skeletal Muscle of Mitochondrial DNA Mutator Mice     
Asimina Hiona  Alberto Sanz  Gregory C. Kujoth  Reinald Pamplona  Arnold Y. Seo  Tim Hofer  Shinichi Someya  Takuya Miyakawa  Chie Nakayama  Alejandro K. Samhan-Arias  Stephane Servais  Jamie L. Barger  Manuel Portero-Otín  Masaru Tanokura  Tomas A. Prolla  Christiaan Leeuwenburgh 《PloS one》2010,5(7)

Background

Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA) mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established.

Methodology/Principal Findings

We investigated the relationship between mtDNA mutations and sarcopenia at the gene expression and biochemical levels using a mouse model that expresses a proofreading-deficient version (D257A) of the mitochondrial DNA Polymerase γ, resulting in increased spontaneous mtDNA mutation rates. Gene expression profiling of D257A mice followed by Parametric Analysis of Gene Set Enrichment (PAGE) indicates that the D257A mutation is associated with a profound downregulation of gene sets associated with mitochondrial function. At the biochemical level, sarcopenia in D257A mice is associated with a marked reduction (35–50%) in the content of electron transport chain (ETC) complexes I, III and IV, all of which are partly encoded by mtDNA. D257A mice display impaired mitochondrial bioenergetics associated with compromised state-3 respiration, lower ATP content and a resulting decrease in mitochondrial membrane potential (Δψm). Surprisingly, mitochondrial dysfunction was not accompanied by an increase in mitochondrial reactive oxygen species (ROS) production or oxidative damage.

Conclusions/Significance

These findings demonstrate that mutations in mtDNA can be causal in sarcopenia by affecting the assembly of functional ETC complexes, the lack of which provokes a decrease in oxidative phosphorylation, without an increase in oxidative stress, and ultimately, skeletal muscle apoptosis and sarcopenia.  相似文献   

13.
Ancient Out-of-Africa Mitochondrial DNA Variants Associate with Distinct Mitochondrial Gene Expression Patterns     
Tal Cohen  Liron Levin  Dan Mishmar 《PLoS genetics》2016,12(11)
Mitochondrial DNA (mtDNA) variants have been traditionally used as markers to trace ancient population migrations. Although experiments relying on model organisms and cytoplasmic hybrids, as well as disease association studies, have served to underline the functionality of certain mtDNA SNPs, only little is known of the regulatory impact of ancient mtDNA variants, especially in terms of gene expression. By analyzing RNA-seq data of 454 lymphoblast cell lines from the 1000 Genomes Project, we found that mtDNA variants defining the most common African genetic background, the L haplogroup, exhibit a distinct overall mtDNA gene expression pattern, which was independent of mtDNA copy numbers. Secondly, intra-population analysis revealed subtle, yet significant, expression differences in four tRNA genes. Strikingly, the more prominent African mtDNA gene expression pattern best correlated with the expression of nuclear DNA-encoded RNA-binding proteins, and with SNPs within the mitochondrial RNA-binding proteins PTCD1 and MRPS7. Our results thus support the concept of an ancient regulatory transition of mtDNA-encoded genes as humans left Africa to populate the rest of the world.  相似文献   

14.
Mitochondrial DNA Mutations Provoke Dominant Inhibition of Mitochondrial Inner Membrane Fusion     
Cécile Sauvanet  Stéphane Duvezin-Caubet  Bénédicte Salin  Claudine David  Aurélie Massoni-Laporte  Jean-Paul di Rago  Manuel Rojo 《PloS one》2012,7(11)
Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.  相似文献   

15.
A Germline Polymorphism of DNA Polymerase Beta Induces Genomic Instability and Cellular Transformation     
Jennifer Yamtich  Antonia A. Nemec  Agnes Keh  Joann B. Sweasy 《PLoS genetics》2012,8(11)
Several germline single nucleotide polymorphisms (SNPs) have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β), encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER), a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797) in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility.  相似文献   

16.
Germline BAP1 Mutations Predispose to Renal Cell Carcinomas     
《American journal of human genetics》2013,92(6):974-980
The genetic cause of some familial nonsyndromic renal cell carcinomas (RCC) defined by at least two affected first-degree relatives is unknown. By combining whole-exome sequencing and tumor profiling in a family prone to cases of RCC, we identified a germline BAP1 mutation c.277A>G (p.Thr93Ala) as the probable genetic basis of RCC predisposition. This mutation segregated with all four RCC-affected relatives. Furthermore, BAP1 was found to be inactivated in RCC-affected individuals from this family. No BAP1 mutations were identified in 32 familial cases presenting with only RCC. We then screened for germline BAP1 deleterious mutations in familial aggregations of cancers within the spectrum of the recently described BAP1-associated tumor predisposition syndrome, including uveal melanoma, malignant pleural mesothelioma, and cutaneous melanoma. Among the 11 families that included individuals identified as carrying germline deleterious BAP1 mutations, 6 families presented with 9 RCC-affected individuals, demonstrating a significantly increased risk for RCC. This strongly argues that RCC belongs to the BAP1 syndrome and that BAP1 is a RCC-predisposition gene.  相似文献   

17.
Selection and Characterization of Autographa californica Multiple Nucleopolyhedrovirus DNA Polymerase Mutations     
Guozhong Feng  David K. Thumbi  Jondavid de Jong  Jeffrey J. Hodgson  Basil M. Arif  Daniel Doucet  Peter J. Krell 《Journal of virology》2012,86(24):13576-13588
  相似文献   

18.
Recurrent De Novo Dominant Mutations in SLC25A4 Cause Severe Early-Onset Mitochondrial Disease and Loss of Mitochondrial DNA Copy Number     
Kyle Thompson  Homa Majd  Christina Dallabona  Karit Reinson  Martin?S. King  Charlotte?L. Alston  Langping He  Tiziana Lodi  Simon?A. Jones  Aviva Fattal-Valevski  Nitay?D. Fraenkel  Ann Saada  Alon Haham  Pirjo Isohanni  Roshni Vara  Inês?A. Barbosa  Michael?A. Simpson  Charu Deshpande  Sanna Puusepp  Penelope?E. Bonnen  Richard?J. Rodenburg  Anu Suomalainen  Katrin ?unap  Orly Elpeleg  Ileana Ferrero  Robert McFarland  Edmund?R.S. Kunji  Robert?W. Taylor 《American journal of human genetics》2016,99(4):860-876
Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.  相似文献   

19.
Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance     
Penelope?E. Bonnen  John?W. Yarham  Arnaud Besse  Ping Wu  Eissa?A. Faqeih  Ali?Mohammad Al-Asmari  Mohammad?A.M. Saleh  Wafaa Eyaid  Alrukban Hadeel  Langping He  Frances Smith  Shu Yau  Eve?M. Simcox  Satomi Miwa  Taraka Donti  Khaled?K. Abu-Amero  Lee-Jun Wong  William?J. Craigen  Brett?H. Graham  Kenneth?L. Scott  Robert McFarland  Robert?W. Taylor 《American journal of human genetics》2013,93(4):773
  相似文献   

20.
Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance     
Penelope?E. Bonnen  John?W. Yarham  Arnaud Besse  Ping Wu  Eissa?A. Faqeih  Ali?Mohammad Al-Asmari  Mohammad?A.M. Saleh  Wafaa Eyaid  Alrukban Hadeel  Langping He  Frances Smith  Shu Yau  Eve?M. Simcox  Satomi Miwa  Taraka Donti  Khaled?K. Abu-Amero  Lee-Jun Wong  William?J. Craigen  Brett?H. Graham  Kenneth?L. Scott  Robert McFarland  Robert?W. Taylor 《American journal of human genetics》2013,93(3):471-481
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号