首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function.  相似文献   

2.
Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these ’Mak5 cluster’ factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation.  相似文献   

3.
Nuclear export of ribosomes requires a subset of nucleoporins and the Ran system, but specific transport factors have not been identified. Using a large subunit reporter (Rpl25p-eGFP), we have isolated several temperature-sensitive ribosomal export (rix) mutants. One of these corresponds to the ribosomal protein Rpl10p, which interacts directly with Nmd3p, a conserved and essential protein associated with 60S subunits. We find that thermosensitive nmd3 mutants are impaired in large subunit export. Strikingly, Nmd3p shuttles between the nucleus and cytoplasm and is exported by the nuclear export receptor Xpo1p. Moreover, we show that export of 60S subunits is Xpo1p dependent. We conclude that nuclear export of 60S subunits requires the nuclear export sequence-containing nonribosomal protein Nmd3p, which directly binds to the large subunit protein Rpl10p.  相似文献   

4.
Factors affecting nuclear export of the 60S ribosomal subunit in vivo   总被引:16,自引:0,他引:16       下载免费PDF全文
In Saccharomyces cerevisiae, the 60S ribosomal subunit assembles in the nucleolus and then is exported to the cytoplasm, where it joins the 40S subunit for translation. Export of the 60S subunit from the nucleus is known to be an energy-dependent and factor-mediated process, but very little is known about the specifics of its transport. To begin to address this problem, an assay was developed to follow the localization of the 60S ribosomal subunit in S. cerevisiae. Ribosomal protein L11b (Rpl11b), one of the approximately 45 ribosomal proteins of the 60S subunit, was tagged at its carboxyl terminus with the green fluorescent protein (GFP) to enable visualization of the 60S subunit in living cells. A panel of mutant yeast strains was screened for their accumulation of Rpl11b-GFP in the nucleus as an indicator of their involvement in ribosome synthesis and/or transport. This panel included conditional alleles of several rRNA-processing factors, nucleoporins, general transport factors, and karyopherins. As predicted, conditional alleles of rRNA-processing factors that affect 60S ribosomal subunit assembly accumulated Rpl11b-GFP in the nucleus. In addition, several of the nucleoporin mutants as well as a few of the karyopherin and transport factor mutants also mislocalized Rpl11b-GFP. In particular, deletion of the previously uncharacterized karyopherin KAP120 caused accumulation of Rpl11b-GFP in the nucleus, whereas ribosomal protein import was not impaired. Together, these data further define the requirements for ribosomal subunit export and suggest a biological function for KAP120.  相似文献   

5.
It has recently become clear that the misassembly of ribosomes in eukaryotic cells can have deleterious effects that go far beyond a simple shortage of ribosomes. In this work we find that cells deficient in ribosomal protein L1 (Rpl1; Rpl10a in mammals) produce ribosomes lacking Rpl1 that are exported to the cytoplasm and that can be incorporated into polyribosomes. The presence of such defective ribosomes leads to slow growth and appears to render the cells hypersensitive to lesions in the ubiquitin-proteasome system. Several genes that were reasonable candidates for degradation of 60S subunits lacking Rpl1 fail to do so, suggesting that key players in the surveillance of ribosomal subunits remain to be found. Interestingly, in spite of rendering the cells hypersensitive to the proteasome inhibitor MG132, shortage of Rpl1 partially suppresses the stress-invoked temporary repression of ribosome synthesis caused by MG132.  相似文献   

6.
The ribosome stalk is essential for recruitment of translation factors. In yeast, P0 and Rpl12 correspond to bacterial L10 and L11 and form the stalk base of mature ribosomes, whereas Mrt4 is a nuclear paralogue of P0. In this study, we show that the dual-specificity phosphatase Yvh1 is required for the release of Mrt4 from the pre-60S subunits. Deletion of YVH1 leads to the persistence of Mrt4 on pre-60S subunits in the cytoplasm. A mutation in Mrt4 at the protein–RNA interface bypasses the requirement for Yvh1. Pre-60S subunits associated with Yvh1 contain Rpl12 but lack both Mrt4 and P0. These results suggest a linear series of events in which Yvh1 binds to the pre-60S subunit to displace Mrt4. Subsequently, P0 loads onto the subunit to assemble the mature stalk, and Yvh1 is released. The initial assembly of the ribosome with Mrt4 may provide functional compartmentalization of ribosome assembly in addition to the spatial separation afforded by the nuclear envelope.  相似文献   

7.
PDCD2 is an evolutionarily conserved protein with previously characterized homologs in Drosophila (zfrp8) and budding yeast (Tsr4). Although mammalian PDCD2 is essential for cell proliferation and embryonic development, the function of PDCD2 that underlies its fundamental cellular role has remained unclear. Here, we used quantitative proteomics approaches to define the protein-protein interaction network of human PDCD2. Our data revealed that PDCD2 specifically interacts with the 40S ribosomal protein uS5 (RPS2) and that the PDCD2-uS5 complex is assembled co-translationally. Loss of PDCD2 expression leads to defects in the synthesis of the small ribosomal subunit that phenocopy a uS5 deficiency. Notably, we show that PDCD2 is important for the accumulation of soluble uS5 protein as well as its incorporation into 40S ribosomal subunit. Our findings support that the essential molecular function of PDCD2 is to act as a dedicated ribosomal protein chaperone that recognizes uS5 co-translationally in the cytoplasm and accompanies uS5 to ribosome assembly sites in the nucleus. As most dedicated ribosomal protein chaperones have been identified in yeast, our study reveals that similar mechanisms exist in human cells to assist ribosomal proteins coordinate their folding, nuclear import and assembly in pre-ribosomal particles.  相似文献   

8.
During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed.  相似文献   

9.
Ribosome synthesis in eukaryotes requires a multitude of trans-acting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied trans-acting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA3, 27SBS and 7SL/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented.  相似文献   

10.
Eukaryotic translation initiation factor 6 (eIF6), also termed p27BBP, is an evolutionary conserved regulator of ribosomal function. The protein is involved in maturation and/or export from the nucleus of the 60S ribosomal subunit. Regulated binding to and release from the 60S subunit also regulates formation of 80S ribosomes, and thus translation. The protein is also found in hemidesmosomes of epithelial cells expressing beta4 integrin and is assumed to regulate cross-talk between beta4 integrin, intermediate filaments and ribosomes. In the present study we show that the Dictyostelium eIF6 (also called p27BBP) gene is expressed during growth, down-regulated during the first hours of starvation, and up-regulated again at the end of aggregation. Phagocytosis, and to a lesser extent pinocytic uptake of axenic medium, stimulate gene expression in starving cells. The eIF6 gene is present in single copy and its ablation is lethal. We utilized the green fluorescent protein (GFT) as fusion protein marker to investigate sequences responsible for eIF6 subcellular localization. The protein is found both in cytoplasm and nucleus, and is enriched in nucleoli. Deletion sequence analysis shows that nucle(ol)ar localization sequences are located within the N- and C-terminal subdomains of the protein.  相似文献   

11.
60S ribosomes undergo initial assembly in the nucleolus before export to the cytoplasm and recent analyses have identified several nucleolar pre-60S particles. To unravel the steps in the pathway of ribosome formation, we have purified the pre-60S ribosomes associated with proteins predicted to act at different stages as the pre-ribosomes transit from the nucleolus through the nucleoplasm and are then exported to the cytoplasm for final maturation. About 50 non-ribosomal proteins are associated with the early nucleolar pre-60S ribosomes. During subsequent maturation and transport to the nucleoplasm, many of these factors are removed, while others remain attached and additional factors transiently associate. When the 60S precursor particles are close to exit from the nucleus they associate with at least two export factors, Nmd3 and Mtr2. As the 60S pre-ribosome reaches the cytoplasm, almost all of the factors are dissociated. These data provide an initial biochemical map of 60S ribosomal subunit formation on its path from the nucleolus to the cytoplasm.  相似文献   

12.
Despite the rising knowledge about ribosome function and structure and how ribosomal subunits assemble in vitro in bacteria, the in vivo role of many ribosomal proteins remains obscure both in pro- and eukaryotes. Our systematic analysis of yeast ribosomal proteins (r-proteins) of the small subunit revealed that most eukaryotic r-proteins fulfill different roles in ribosome biogenesis, making them indispensable for growth. Different r-proteins control distinct steps of nuclear and cytoplasmic pre-18S rRNA processing and, thus, ensure that only properly assembled ribosomes become engaged in translation. Comparative analysis of dynamic and steady-state maturation assays revealed that several r-proteins are required for efficient nuclear export of pre-18S rRNA, suggesting that they form an interaction platform with the export machinery. In contrast, the presence of other r-proteins is mainly required before nuclear export is initiated. Our studies draw a correlation between the in vitro assembly, structural localization, and in vivo function of r-proteins.  相似文献   

13.
In Saccharomyces cerevisiae, ribosomal protein L7, one of the ∼46 ribosomal proteins of the 60S subunit, is encoded by paralogous RPL7A and RPL7B genes. The amino acid sequence identity between Rpl7a and Rpl7b is 97 percent; they differ by only 5 amino acid residues. Interestingly, despite the high sequence homology, Rpl7b is detected in both the cytoplasm and the nucleolus, whereas Rpl7a is detected exclusively in the cytoplasm. A site-directed mutagenesis experiment revealed that the change in the amino acid sequence of Rpl7b does not influence its sub-cellular localization. In addition, introns of RPL7A and RPL7B did not affect the subcellular localization of Rpl7a and Rpl7b. Remarkably, Rpl7b was detected exclusively in the cytoplasm in rpl7a knockout mutant, and overexpression of Rpl7a resulted in its accumulation in the nucleolus, indicating that the subcellular localization of Rpl7a and Rpl7b is influenced by the intracellular level of Rpl7a. Rpl7b showed a wide range of localization patterns, from exclusively cytoplasmic to exclusively nucleolar, in knock-out mutants for some rRNA-processing factors, nuclear pore proteins, and large ribosomal subunit assembly factors. Rpl7a, however, was detected exclusively in the cytoplasm in these mutants. Taken together, these results suggest that although Rpl7a and Rpl7b are paralogous and functionally replaceable with each other, their precise physiological roles may not be identical.  相似文献   

14.
In eukaryotes, nuclear export of the large (60S) ribosomal subunit requires the adapter protein Nmd3p to provide the nuclear export signal. Here, we show that in yeast release of Nmd3p from 60S subunits in the cytoplasm requires the ribosomal protein Rpl10p and the G-protein, Lsg1p. Mutations in LSG1 or RPL10 blocked Nmd3-GFP shuttling into the nucleus and export of pre-60S subunits from the nucleus. Overexpression of NMD3 alleviated the export defect, indicating that the block in 60S export in lsg1 and rpl10 mutants results indirectly from failing to recycle Nmd3p. The defect in Nmd3p recycling and the block in 60S export in both lsg1 and rpl10 mutants was also suppressed by mutant Nmd3 proteins that showed reduced binding to 60S subunits in vitro. We propose that the correct loading of Rpl10p into 60S subunits is required for the release of Nmd3p from subunits by Lsg1p. These results suggest a coupling between recycling the 60S export adapter and activation of 60S subunits for translation.  相似文献   

15.
Arx1 and Rei1 are found on late pre-60S ribosomal particles containing the export adaptor Nmd3. Arx1 is related to methionine aminopeptidases (MetAPs), and Rei1 is a C2H2 zinc finger protein whose function in ribosome biogenesis has not been previously characterized. Arx1 and Rei1 localized predominately to the nucleus and cytoplasm, respectively, but could be coimmunoprecipitated, suggesting that they are transiently in the same 60S complex. arx1delta mutants showed a modest accumulation of 60S subunits in the nucleus, suggesting that Arx1 enhances 60S export. Deletion of REI1 led to cold sensitivity and redistribution of Arx1 to the cytoplasm, where it remained bound to free 60S subunits. However, deletion of ARX1 or the fusion of enhanced GFP (eGFP) to Rpl25 suppressed the cold sensitivity of an rei1delta mutant. The presence of eGFP on Rpl25 or its neighboring protein Rpl35 reduced the binding of Arx1 to 60S subunits, suggesting that Arx1 binds to 60S subunits in the vicinity of the exit tunnel. Mutations in Arx1 that disrupted its binding to 60S also suppressed an rei1delta mutant and restored the normal nuclear localization of Arx1. These results indicate that the cold sensitivity of rei1delta cells is due to the persistence of Arx1 on 60S subunits in the cytoplasm. Furthermore, these results suggest that Rei1 is needed for release of Arx1 from nascent 60S subunits after export to the cytoplasm but not for the subsequent nuclear import of Arx1.  相似文献   

16.
Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.  相似文献   

17.
As translation proceeds, nascent polypeptides pass through an exit tunnel that traverses the large ribosomal subunit. Three ribosomal proteins, termed Rpl4, Rpl17, and Rpl39 expose domains to the interior of the exit tunnel of eukaryotic ribosomes. Here we generated ribosome-bound nascent chains in a homologous yeast translation system to analyze contacts between the tunnel proteins and nascent chains. As model proteins we employed Dap2, which contains a hydrophobic signal anchor (SA) segment, and the chimera Dap2α, in which the SA was replaced with a hydrophilic segment, with the propensity to form an α-helix. Employing a newly developed FLAG exposure assay, we find that the nascent SA segment but not the hydrophilic segment adopted a stable, α-helical structure within the tunnel when the most C-terminal SA residue was separated by 14 residues from the peptidyl transferase center. Using UV cross-linking, antibodies specifically recognizing Rpl17 or Rpl39, and a His6-tagged version of Rpl4, we established that all three tunnel proteins of yeast contact the SA, whereas only Rpl4 and Rpl39 also contact the hydrophilic segment. Consistent with the localization of the tunnel exposed domains of Rpl17 and Rpl39, the SA was in contact with Rpl17 in the middle region and with Rpl39 in the exit region of the tunnel. In contrast, Rpl4 was in contact with nascent chain residues throughout the ribosomal tunnel.  相似文献   

18.
Mutational analysis of the ribosomal protein Rpl10 from yeast   总被引:2,自引:0,他引:2  
Yeast Rpl10 belongs to the L10e family of ribosomal proteins. In the large (60 S) subunit, Rpl10 is positioned in a cleft between the central protuberance and the GTPase-activating center. It is loaded into the 60 S subunit at a late step in maturation. We have shown previously that Rpl10 is required for the release of the Crm1-dependent nuclear export adapter Nmd3, an event that also requires the cytoplasmic GTPase Lsg1. Here we have carried out an extensive mutational analysis of Rpl10 to identify mutations that would allow us to map activities to distinct domains of the protein to begin to understand the molecular interaction between Rpl10 and Nmd3. We found that mutations in a central loop (amino acids 102-112) had a significant impact on the release of Nmd3. This loop is unstructured in the crystal and solution structures of prokaryotic Rpl10 orthologs. Thus, the loop is not necessary for stable interaction of Rpl10 with the ribosome, suggesting that it plays a dynamic role in ribosome function or regulating the association of other factors. We also found that mutant Rpl10 proteins were engineered to be unable to bind to the ribosome accumulated in the nucleus. This was unexpected and may suggest a nuclear role for Rpl10.  相似文献   

19.
Structural studies have revealed that the core of the ribosome structure is conserved among ribosomes of all kingdoms. Kingdom-specific ribosomal proteins (r-proteins) are located in peripheral parts of the ribosome. In this work, the interactions between rRNA and r-proteins of eukaryote Saccharomyces cerevisiae ribosome were investigated applying LiCl induced splitting and quantitative mass spectrometry. R-proteins were divided into four groups according to their binding properties to the rRNA. Most yeast r-proteins are removed from rRNA by 0.5–1 M LiCl. Eukaryote-specific r-proteins are among the first to dissociate. The majority of the strong binders are known to be required for the early ribosome assembly events. As compared to the bacterial ribosome, yeast r-proteins are dissociated from rRNA at lower ionic strength. Our results demonstrate that the nature of protein-RNA interactions in the ribosome is not conserved between different kingdoms.  相似文献   

20.
The large ribosomal subunit protein Rpl10p is required for subunit joining and 60S export in yeast. We have recently shown that Rpl10p as well as the cytoplasmic GTPase Lsg1p are required for releasing the 60S nuclear export adapter Nmd3p from subunits in the cytoplasm. Here, we more directly address the order of Nmd3p and Rpl10p recruitment to the subunit. We show that Nmd3p can bind subunits in the absence of Rpl10p. In addition, we examined the basis of the previously reported dominant negative growth phenotype caused by overexpression of C-terminally truncated Rpl10p and found that these Rpl10p fragments are not incorporated into subunits in the nucleus but instead sequester the WD-repeat protein Sqt1p. Sqt1p is an Rpl10p binding protein that is proposed to facilitate loading of Rpl10p into the 60S subunit. Although Sqt1p normally only transiently binds 60S subunits, the levels of Sqt1p that can be coimmunoprecipitated by the 60S-associated GTPase Lsg1p are significantly increased by a dominant mutation in the Walker A motif of Lsg1p. This mutant Lsg1 protein also leads to increased levels of Sqt1p in complexes that are coimmunoprecipitated with Nmd3p. Furthermore, the dominant LSG1 mutant also traps a mutant Rpl10 protein that does not normally bind stably to the subunit. These results support the idea that Sqt1p loads Rpl10p onto the Nmd3p-bound subunit after export to the cytoplasm and that Rpl10p loading involves the GTPase Lsg1p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号