首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetic retinopathy (DR) is a leading cause of blindness globally and its pathogenesis has still not been completely elucidated. Some studies show a close relation between oxidative stress and DR. This study was aimed to investigate the effects of anti-oxidant in DR and expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1) from retinal blood vessels in diabetic rats. Diabetic rat models were established by intraperitoneal injection of streptozotocin (60 mg/kg) and confirmation of high serum glucose levels in the animals. Antioxidant N-acetylcysteine was given to diabetic rats to elicit antioxidative responses, and rats were sacrificed at 3 and 5 months. Ultrastructures of retinal vascular tissues were observed under transmission electron microscope, and pathology of retinal capillaries was examined using retinal vascular digest preparations. Changes in the expression of VEGF and ICAM-1 were examined by immunofluorescence; and reactive oxygen species contents in the retinas were detected using dichlorofluorescein assay. Compared with normal rats, diabetic rats displayed significant retinopathy both under electronic and light microscopy, accompanied by elevated reactive oxygen species contents in the retinas; N-acetylcysteine treatment alleviated the pathological changes and also decreased reactive oxygen species, most significantly at 5 months. VEGF and ICAM-1 expressions were significantly up-regulated in retinal blood vessels from diabetic rats, and such up-regulation was attenuated by N-acetylcysteine treatment. The expression of both factors returned to basal levels after 5-month treatment with N-acetylcysteine. Long-term N-acetylcysteine treatment exerts protective effects on the diabetic retinas, possibly through its down-regulation of the expression of VEGF and ICAM-1, and reduction of reactive oxygen species content in retinal vascular tissues in diabetic rats.  相似文献   

2.
The rapidly increasing prevalence of diabetes mellitus worldwide is one of the most serious and challenging health problems in the 21st century. Mammalian sirtuin 1 (SIRT1) has been shown to decrease high-glucose-induced endothelial cell senescence in vitro and prevent hyperglycemia-induced vascular dysfunction. However, a role for SIRT1 in prevention of hyperglycemia-induced vascular cell senescence in vivo remains unclear. We used endothelium-specific SIRT1 transgenic (SIRT1-Tg) mice and wild-type (WT) mice to construct a 40-week streptozotocin (STZ)-induced diabetic mouse model. In this mode, 42.9% of wild-type (WT) mice and 38.5% of SIRT1-Tg mice were successfully established as diabetic. Forty weeks of hyperglycemia induced significant vascular cell senescence in aortas of mice, as indicated by upregulation of expression of senescence-associated markers including p53, p21 and plasminogen activator inhibitor-1 (PAI-1). However, SIRT1-Tg diabetic mice displayed dramatically decreased expression of p53, p21 and PAI-1 compared with diabetic WT mice. Moreover, manganese superoxide dismutase expression (MnSOD) was significantly downregulated in the aortas of diabetic WT mice, but was preserved in diabetic SIRT1-Tg mice. Furthermore, expression of the oxidative stress adaptor p66Shc was significantly decreased in aortas of SIRT1-Tg diabetic mice compared with WT diabetic mice. Overall, these findings suggest that SIRT1-mediated inhibition of hyperglycemia-induced vascular cell senescence is mediated at least partly through the reduction of oxidative stress.  相似文献   

3.
Kallistatin, an endogenous protein, protects against vascular injury by inhibiting oxidative stress and inflammation in hypertensive rats and enhancing the mobility and function of endothelial progenitor cells (EPCs). We aimed to determine the role and mechanism of kallistatin in vascular senescence and aging using cultured EPCs, streptozotocin (STZ)‐induced diabetic mice, and Caenorhabditis elegans (C. elegans). Human kallistatin significantly decreased TNF‐α‐induced cellular senescence in EPCs, as indicated by reduced senescence‐associated β‐galactosidase activity and plasminogen activator inhibitor‐1 expression, and elevated telomerase activity. Kallistatin blocked TNF‐α‐induced superoxide levels, NADPH oxidase activity, and microRNA‐21 (miR‐21) and p16INK4a synthesis. Kallistatin prevented TNF‐α‐mediated inhibition of SIRT1, eNOS, and catalase, and directly stimulated the expression of these antioxidant enzymes. Moreover, kallistatin inhibited miR‐34a synthesis, whereas miR‐34a overexpression abolished kallistatin‐induced antioxidant gene expression and antisenescence activity. Kallistatin via its active site inhibited miR‐34a, and stimulated SIRT1 and eNOS synthesis in EPCs, which was abolished by genistein, indicating an event mediated by tyrosine kinase. Moreover, kallistatin administration attenuated STZ‐induced aortic senescence, oxidative stress, and miR‐34a and miR‐21 synthesis, and increased SIRT1, eNOS, and catalase levels in diabetic mice. Furthermore, kallistatin treatment reduced superoxide formation and prolonged wild‐type C. elegans lifespan under oxidative or heat stress, although kallistatin's protective effect was abolished in miR‐34 or sir‐2.1 (SIRT1 homolog) mutant C. elegans. Kallistatin inhibited miR‐34, but stimulated sir‐2.1 and sod‐3 synthesis in C. elegans. These in vitro and in vivo studies provide significant insights into the role and mechanism of kallistatin in vascular senescence and aging by regulating miR‐34a‐SIRT1 pathway.  相似文献   

4.
This study investigated the time course of NADH oxidase, a source of superoxide in the vascular endothelium, inducible nitric oxide synthase (iNOS), and peroxynitrite (ONOO(-)) in the BBZ/Wor rat, a spontaneous model of noninsulin dependent diabetes (NIDDM). Colloidal gold-labeled immunocytochemical studies of iNOS and nitrotyrosine, a marker for OONO(-), were done on sections of retinas from male BBZ/Wor rats in which NADH oxidase was localized by cerium derived cytochemistry at three time points: pre-diabetes (prior to the onset of hyperglycemia); new onset diabetes (2-6 days after onset of hyperglycemia); and chronic diabetes (4-18 months after onset of hyperglycemia). Control retinas were from age matched non-diabetic BB(DR)/Wor rats. The percentage of blood vessels positive for NADH oxidase increased significantly (P = 0.05) in new onset (64.2 +/- 6.5%) and chronic diabetes (83.2 +/- 11.4%), as compared to pre-diabetes (25.8 +/- 5.6%) and nondiabetic controls (33.6 +/- 15.9%). The percentage of blood vessels positive for iNOS immunoreactivity was significantly higher in new onset diabetic retinas (69.6 +/- 5.88%, P = 0.0001; 8.9 +/- 3.29 colloidal gold particles (cgp) /50 microm(2)) than in chronic diabetic retinas (49.9 +/- 9.75%; 7.9 +/- 5.12 cgp) and both were significantly higher (P = 0.0001) than in prediabetic (3.7 +/- 0.81%; 0.4 +/- 0.56 cgp) and nondiabetic control retinas (8.7 +/- 4.66%; 1.2 +/- 1.40 cgp). In new onset diabetes, levels of nitrotyrosine immunoreactivity (60.8 +/- 16.91 cgp) were significantly higher (P = 0.0001) than those in chronic diabetes (29.5 +/- 4.31 cgp); both were significantly higher (P = 0.0001) than those in prediabetic (8.2 +/- 1.70 cgp) and nondiabetic retinas (9.0 +/- 1.87 cgp). There was no cumulative increase in nitrotyrosine in the chronic diabetic retinas as a function of time. In rats with diabetes there was disruption of the inner blood-retinal barrier. These results suggest that iNOS and ONOO(-) may contribute to retinal damage in diabetes from the onset of hyperglycemia in NIDDM.  相似文献   

5.
6.
The effect of atorvastatin (Lipitor) on diabetes-induced changes in plasma lipids, oxidative stress and the ability of aortic tissues to generate prostacyclin was studied in streptozotocin diabetic rats. In diabetic rats, plasma total cholesterol, triglycerides and serum glucose significantly increased compared to nondiabetic rats. Atorvastatin administration to diabetic rats did not affect hyperglycemia but significantly reduced plasma total cholesterol and triglycerides compared to diabetic rats. The oxidative stress markers urinary isoprostane, liver thiobarbituric acid reactive substances (TBARS) and plasma protein carbonyl content significantly increased in diabetic rats compared to nondiabetic rats. Atorvastatin admnistration to diabetic rats significantly reduced oxidative stress levels compared to diabetic rats, but urinary isoprostane and liver TBARS remained significantly higher than nondiabetic rats. Prostacyclin (PGI(2)) generation by aortic tissues significantly decreased in diabetic rats compared to nondiabetic rats. Atorvastatin administration to diabetic rats did not reverse that inhibition. These results were discussed in the light of the possible effects of hyperglycemia and statins on NAD(P)H-oxidase and cyclooxygenase-2 activities and the genetic difference between rats and other mammals regarding the level of vascular superoxide dismutase (SOD) activity.  相似文献   

7.
应激诱导的细胞早衰与复制性细胞衰老有相似的细胞表型,但其机制不尽相同.分析二者的衰老相关基因表达特点对了解应激因素诱导细胞衰老的机制有重要意义. 本文对过氧化氢诱导的HeLa细胞早衰过程中的关键衰老相关基因及其转录后调控因子的表达做了分析.结果发现,在复制性衰老过程中明显降低的cyclin A、cyclin B1、c-fos及HuR,在温和过氧化氢诱导的细胞早衰过程中并无明显改变;在氧化应激诱导的细胞早衰过程中,p21与p16表达升高,AUF1则降低,与复制性衰老过程一致;p21 mRNA半衰期在复制性衰老过程中无明显变化,但在氧化应激诱导的细胞早衰过程中则显著延长.上述结果提示,尽管氧化应激诱导的细胞早衰与复制性衰老存在相似基因表达变化,调控机制则不尽相同.  相似文献   

8.
We previously demonstrated that indoxyl sulfate (IS), a uremic toxin, induces aortic calcification in hypertensive rats and induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. This study aimed to clarify whether IS stimulates senescence of cultured human aortic smooth muscle cells (HASMCs) and aorta in Dahl salt-sensitive hypertensive rats and whether AST-120, an oral sorbent, prevents senescence of aorta in subtotally nephrectomized uremic rats. IS increased the mRNA expression of p53 and p21 in HASMCs, whereas it did not change that of p16 and retinoblastoma protein (pRb). The IS-induced expression of p53 and p21 was suppressed by N-acetylcysteine, an antioxidant. IS promoted protein expression of p53, p21, and senescence-associated β-galactosidase (SA-β-gal) activity in HASMCs, and N-acetylcysteine and pifithrin-α,p-nitro, a p53 inhibitor, blocked these effects. IS upregulated prelamin A, a hallmark of vascular smooth muscle cell senescence, and downregulated FACE1/Zempste24 protein expression in HASMCs, and N-acetylcysteine suppressed these effects. Administration of IS to hypertensive rats increased expression of SA-β-gal, p53, p21, prelamin A, and oxidative stress markers such as 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) in the cells embedded in the calcification area of arcuate aorta. Further, the uremic rat model showed positive staining for SA-β-gal, p53, p21, prelamin A, 8-OHdG, and MDA in the cells embedded in the calcification area of arcuate aorta, whereas AST-120 reduced the expression of these biomarkers. Taken together, IS accelerates vascular smooth muscle cell senescence with upregulation of p53, p21, and prelamin A and downregulation of FACE1 through oxidative stress.  相似文献   

9.
The early stages of diabetic retinopathy (DR) are characterized by alterations similar to neurodegenerative and inflammatory conditions such as increased neural apoptosis, microglial cell activation and amplified production of pro-inflammatory cytokines. Adenosine regulates several physiological functions by stimulating four subtypes of receptors, A1AR, A2AAR, A2BAR, and A3AR. Although the adenosinergic signaling system is affected by diabetes in several tissues, it is unknown whether diabetic conditions in the retina can also affect it. Adenosine delivers potent suppressive effects on virtually all cells of the immune system, but its potential role in the context of DR has yet to be studied in full. In this study, we used primary mixed cultures of rat retinal cells exposed to high glucose conditions, to mimic hyperglycemia, and a streptozotocin rat model of type 1 diabetes to determine the effect diabetes/hyperglycemia have on the expression and protein levels of adenosine receptors and of the enzymes adenosine deaminase and adenosine kinase. We found elevated mRNA and protein levels of A1AR and A2AAR, in retinal cell cultures under high glucose conditions and a transient increase in the levels of the same receptors in diabetic retinas. Adenosine deaminase and adenosine kinase expression and protein levels showed a significant decrease in diabetic retinas 30 days after diabetes induction. An enzymatic assay performed in retinal cell cultures revealed a marked decrease in the activity of adenosine deaminase under high glucose conditions. We also found an increase in extracellular adenosine levels accompanied by a decrease in intracellular levels when retinal cells were subjected to high glucose conditions. In conclusion, this study shows that several components of the retinal adenosinergic system are affected by diabetes and high glucose conditions, and the modulation observed may uncover a possible mechanism for the alleviation of the inflammatory and excitotoxic conditions observed in diabetic retinas.  相似文献   

10.
Little is known about interventions that may prevent predegenerative changes in the diabetic retina. This study tested the hypothesis that immediate, systemic treatment with an insulin-like growth factor (IGF)-1 analog can prevent abnormal accumulations of type 1 IGF receptor, and phospho-Akt (Thr 308) immunoreactivity in predegenerative retinas of streptozotocin (STZ) diabetic rats. Type 1 IGF receptor immunoreactivity increased approximately 3-fold in both inner nuclear layer (INL) and ganglion cell layer (GCL) in retinas from STZ rats versus nondiabetic controls. Phospho-Akt (Thr 308) immunoreactivity increased 5-fold in GCL and 8-fold in INL of STZ rat retinas. In all cases, immunoreactive cells were significantly reduced in STZ des(1–3)IGF-1–treated versus STZ rats. Preliminary results suggested that vascular endothelial growth factor (VEGF) levels may also be reduced. Hyperglycemia/ failure of weight gain in diabetic rats continued despite systemic des(1–3)IGF-1. These data show that an IGF-1 analog can prevent early retinal biochemical abnormalities implicated in the progression of diabetic retinopathy, despite ongoing hyperglycemia.  相似文献   

11.
Although oxidative stress is a hallmark of important vascular disorders such as diabetic retinopathy, it remains unclear why the retinal microvasculature is particularly vulnerable to this pathophysiological condition. We postulated that redox-sensitive ion channels may play a role. Using H(2)O(2) to cause oxidative stress in microvascular complexes freshly isolated from the adult rat retina, we assessed ionic currents, cell viability, intracellular oxidants, and cell calcium by using perforated-patch recordings, trypan blue dye exclusion, and fura-2 fluorescence, respectively. Supporting a role for the oxidant-sensitive ATP-sensitive K (K(ATP)) channels, we found that these channels are activated during exposure of retinal microvessels to H(2)O(2). Furthermore, their inhibition by glibenclamide significantly lessened H(2)O(2)-induced microvascular cell death. Additional experiments established that by increasing the influx of calcium into microvascular cells, the K(ATP) channel-mediated hyperpolarization boosted the vulnerability of these cells to oxidative stress. In addition to the K(ATP) channel-dependent mechanism for increasing the lethality of oxidative stress, we also found that the vulnerability of cells in the capillaries, but not in the arterioles, was further boosted by a K(ATP) channel-independent mechanism, which our experiments indicated involves the oxidant-induced activation of calcium-permeable nonspecific cation channels. Taken together, our findings support a working model in which both K(ATP) channel-independent and K(ATP) channel-dependent mechanisms render the capillaries of the retina particularly vulnerable to oxidative stress. Identification of these previously unappreciated mechanisms for boosting the lethality of oxidants may provide new targets for pharmacologically limiting damage to the retinal microvasculature during periods of oxidative stress.  相似文献   

12.

Background

Diabetic maculopathy, the leading cause of vision loss in patients with type 2 diabetes, is characterized by hyper-permeability of retinal blood vessels with subsequent formation of macular edema and hard exudates. The degree of hyperglycemia and duration of diabetes have been suggested to be good predictors of retinal complications. Intervention studies have determined that while intensive treatment of diabetes reduced the development of proliferative diabetic retinopathy it was associated with a two to three-fold increased risk of severe hypoglycemia. Thus we hypothesized the need to identify downstream glycemic targets, which induce retinal vascular permeability that could be targeted therapeutically without the additional risks associated with intensive treatment of the hyperglycemia. Betacellulin is a 32 kD member of the epidermal growth factor family with mitogenic properties for the retinal pigment epithelial cells. This led us to hypothesize a role for betacellulin in the retinal vascular complications associated with diabetes.

Methods and Findings

In this study, using a mouse model of diabetes, we demonstrate that diabetic mice have accentuated retinal vascular permeability with a concomitant increased expression of a cleaved soluble form of betacellulin (s-Btc) in the retina. Intravitreal injection of soluble betacellulin induced retinal vascular permeability in normoglycemic and hyperglycemic mice. Western blot analysis of retinas from patients with diabetic retinopathy showed an increase in the active soluble form of betacellulin. In addition, an increase in the levels of A disintegrin and metalloproteinase (ADAM)-10 which plays a role in the cleavage of betacellulin was seen in the retinas of diabetic mice and humans.

Conclusions

These results suggest that excessive amounts of betacellulin in the retina may contribute to the pathogenesis of diabetic macular edema.  相似文献   

13.
14.
The retina experiences mitochondrial dysfunction in diabetes, superoxide levels are elevated, and mitochondrial superoxide dismutase (MnSOD) activity is decreased. Inhibition of superoxide accumulation in diabetes prevents mitochondrial dysfunction, apoptosis of retinal capillary cells, and the development of retinal histopathology. The purpose of this study is to examine the effect of overexpression of MnSOD on oxidative stress, DNA damage, and nitrative stress in the retina of diabetic mice. After 7 weeks of diabetes in MnSOD overexpressing (hemizygous) mice (MnSOD-Tg) and in their age-matched nontransgenic mice, parameters of oxidative stress and nitrative stress were measured in the retina. Overexpression of MnSOD prevented diabetes-induced decreases in retinal GSH levels and the total antioxidant capacity. In the same retina, MnSOD overexpression also inhibited diabetes-induced increases in the levels of 8-OHdG and nitrotyrosine. This suggests that MnSOD could be implicated in the pathogenesis of retinopathy by protecting the retina from increased oxidative damage experienced in diabetic conditions. Thus, understanding how changes in mitochondrial function result in the development of diabetic retinopathy could help identify SOD mimics to inhibit its development.  相似文献   

15.

Purpose

Apelin is a novel adipocytokine participating in diabetes, but its role in diabetic retinopathy (DR) is unknown. Our study aimed to investigate the effect of apelin on the proliferative potential in DR along with its antagonist inhibitory effects.

Principal Findings

Strong staining of apelin, co-localized with glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) was observed in the retina of diabetic rats. Apelin, GFAP, and VEGF mRNA and protein levels were significantly increased in the sample’s retinas. Moreover, exogenous apelin promoted retinal Müller cell proliferation in vivo. Simultaneously, apelin induced GFAP and VEGF expression. F13A markedly reduced retinal gliosis caused by diabetes. Furthermore, F13A suppressed both GFAP and VEGF expression in vivo.

Significance

Our results strongly suggest that apelin is associated with the development of DR and contributes to changes in the retinas of diabetic rats. Apelin induced promotion of cell proliferation lends support to the possibility that apelin may play a role in the progression of DR to a proliferative phase. This possible role deserves further investigation, which may offer new perspectives in the early prevention and treatment of DR.  相似文献   

16.

Aims

Oxidative stress and apoptosis are among the earliest lesions of diabetic retinopathy. This study sought to examine the anti-oxidative and anti-apoptotic effects of α-melanocyte-stimulating hormone (α-MSH) in early diabetic retinas and to explore the underlying mechanisms in retinal vascular endothelial cells.

Methods

Sprague-Dawley rats were injected intravenously with streptozocin to induce diabetes. The diabetic rats were injected intravitreally with α-MSH or saline. At week 5 after diabetes, the retinas were analyzed for reactive oxygen species (ROS) and gene expression. One week later, the retinas were processed for terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and transmission electron microscopy. Retinal vascular endothelial cells were stimulated by high glucose (HG) with or without α-MSH. The expression of Forkhead box O genes (Foxos) was examined through real-time PCR. The Foxo4 gene was overexpressed in endothelial cells by transient transfection prior to α-MSH or HG treatment, and oxidative stress and apoptosis were analyzed through CM-H2DCFDA and annexin-V assays, respectively.

Results

In diabetic retinas, the levels of H2O2 and ROS and the total anti-oxidant capacity were normalized, the apoptotic cell number was reduced, and the ultrastructural injuries were ameliorated by α-MSH. Treatment with α-MSH also corrected the aberrant changes in eNOS, iNOS, ICAM-1, and TNF-α expression levels in diabetic retinas. Furthermore, α-MSH inhibited Foxo4 up-regulation in diabetic retinas and in endothelial cells exposed to HG, whereas Foxo4 overexpression abrogated the anti-oxidative and anti-apoptotic effects of α-MSH in HG-stimulated retinal vascular endothelial cells.

Conclusions

α-MSH normalized oxidative stress, reduced apoptosis and ultrastructural injuries, and corrected gene expression levels in early diabetic retinas. The protective effects of α-MSH in retinal vascular endothelial cells may be mediated through the inhibition of Foxo4 up-regulation induced by HG. This study suggests an α-MSH-mediated potential intervention approach to early diabetic retinopathy and a novel regulatory mechanism involving Foxo4.  相似文献   

17.
In order to maintain high transmembrane ionic gradients, retinal tissues require a large amount of energy probably provided by a high rate of both, glycolysis and oxidative phosphorylation. However, little information exists on retinal mitochondrial efficiency. We analyzed the retinal mitochondrial activity in ex vivo retinas and in isolated mitochondria from normal rat retina and from short-term streptozotocin-diabetic rats. In normal ex vivo retinas, increasing glucose concentrations from 5.6mM to 30mM caused a four-fold increase in glucose accumulation and CO2 production. Retina from diabetic rats accumulated similar amounts of glucose. However, CO2 production was not as high. Isolated mitochondria from normal rat retina exhibited a resting rate of oxygen consumption of 14.6 ± 1.1 natgO (min.mg prot)-1 and a respiratory control of 4.0. Mitochondria from 7, 20 and 45 days diabetic rats increased the resting rate of oxygen consumption and the activity of the electron transport complexes; under these conditions the mitochondrial transmembrane potential decreased. In spite of this, the ATP synthesis was not modified. GDP, an UCP2 inhibitor, increased mitochondrial membrane potential and superoxide production in controls and at 45 days of diabetes. The role of UCP2 is discussed. The results suggest that at the early stage of diabetes we studied, retinal mitochondria undergo adaptations leading to maintain energetic requirements and prevent oxidative stress.  相似文献   

18.
Heme oxygenase-1 (HO-1) is induced by oxidative stress and plays an important role in protecting the kidney from oxidant-mediated damage in the streptozotocin (STZ) rat model of type-1 diabetes mellitus (DM-1). HO-derived metabolites, presumably carbon monoxide (CO), mediate vasodilatory influences in the renal circulation, particularly in conditions linked to elevated HO-1 protein expression or diminished nitric oxide (NO) levels. We tested the hypothesis that diabetes increases oxidative stress and induces HO-1 protein expression, which contributes to regulate renal hemodynamics in conditions of low NO bioavailability. Two weeks after the induction of diabetes with STZ (65 mg/kg iv), Sprague-Dawley rats exhibited higher renal HO-1 protein expression, hyperglycemia, and elevated renal nitrotyrosine levels than control normoglycemic animals. In anesthetized diabetic rats, renal vascular resistance (RVR) was increased, and in vivo cortical NO levels were reduced (P < 0.05) compared with control animals. Acute administration of the HO inhibitor Stannous mesoporphyrin (SnMP; 40 μmol/kg iv) did not alter renal hemodynamics in control rats, but greatly decreased glomerular filtration rate and renal blood flow, markedly increasing RVR in hyperglycemic diabetic rats. Chronic oral treatment with the SOD mimetic tempol prevented the elevation of nitrotyrosine, the HO-1 protein induction, and the increases in RVR induced by SnMP in the diabetic group, without altering basal NO concentrations or RVR. Increasing concentrations of a CO donor (CO-releasing molecule-A1) on pressurized renal interlobar arteries elicited a comparable relaxation in vessels taken from control or diabetic animals. These results suggest that oxidative stress-induced HO-1 exerts vasodilatory actions that partially maintain renal hemodynamics in uncontrolled DM-1.  相似文献   

19.
Changes in polyploidization, chromatin supraorganization, and chromatin accessibility were investigated in hepatocytes collected from adult, nonobese diabetic (NOD) mice with increasing hyperglycemia and compared with adult normoglycemic controls and 56-week-old normoglycemic BALB/c mice. Our goal was to determine the changes in ploidy degrees and chromatin characteristics in mouse hepatocytes that are associated with insulin-dependent diabetes and to detect similarities in these aspects with those verified with aging, with greater accuracy than previous studies. Image analysis of Feulgen-stained nuclei revealed changes in ploidy degrees and chromatin supraorganization. Chromatin accessibility was assessed with micrococcal nuclease (MNase) digestion. Increased polyploidy was associated with increasing levels of glycemia, and this trend toward polyploidy was found even under normoglycemic conditions in NOD mice. Although high degrees of ploidy were also detected in aged BALB/c mice, the magnitude of polyploidy was not the same magnitude as that in the diabetic mice. While there was increased homogeneity of chromatin packaging with increasing polyploidy under conditions of severe hyperglycemia (and even under conditions of normoglycemia) in NOD mice, an inverse relationship was observed in aged BALB/c mice. Chromatin accessibility to MNase increased under severe hyperglycemia and advanced age, but it was much higher in the diabetic mice. In conclusion, although similarities in polyploidy were observed between the hepatocytes from increasingly hyperglycemic adult mice and those from normoglycemic aged mice, the relationship between chromatin remodeling and increases in ploidy degrees was not the same between the hepatocytes of these two groups. These findings demonstrate that strict similarities between diabetes and aging are not always true at the cellular level. This discordance is likely due to differences in the metabolic state of mouse hepatocytes during aging and diabetic conditions consequent to specificities in their gene regulatory programs. ? 2012 International Society for Advancement of Cytometry.  相似文献   

20.

Objective

There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1).

Materials and Methods

pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis.

Results

After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation.

Conclusion

This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号