首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Interferon (IFN) is one of the potent antiproliferative cytokines and is used to treat some selected cancers. IFN arrests the growth of Burkitt Iymphoma derived cell line Daudi cells in the G1 phase. G1-to-S progression is controlled by positive and negative regulatory genes. Therefore, we investigated the effects of IFN on G1-controlling genes. Expression of cyclin-dependent kinases (Cdks 2, 3, 4, 5, 6), MO 15/Cdk7, and cyclins E and H was studied to assess positive regulators, while p15Ink4B, p16Ink4, p18, p21CipI, and p27Kip1 were assessed as negative regulators. Cdks 2, 4, 6 and cyclin E were markedly down-regulated. MO15/Cdk7 expression showed little change, but its regulatory subunit (cyclin H) was down-regulated like cyclin E. Expression of p15Ink4B and p16Ink4 was not observed. p18 was induced until 48 h and its expression returned to the initial level at 72 h. In contrast, p21Cip1 mRNA expression remained at the baseline level throughout IFN treatment, while the expression of p27Kip1 increased at 48 and 72 h. Taken together, these data indicate that IFN changes the messenger RNA of G1-controlling genes towards the suppression of G1-to-S transition.  相似文献   

2.
3.
4.
Angiotensin II elicits cytosolic Ca2+ signal that is transferred into the mitochondria. Previously we found in H295R cells that this signal transfer is enhanced by both the inhibition of p38 MAPK and a novel isoform of PKC [G. Szanda, P. Koncz, A. Rajki, A. Spät, Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake, Cell Calcium 43 (2008) 250–259]. Now we report that simultaneous activation of these protein kinases (by TNFα and PMA + an inhibitor of the conventional PKC isoforms, respectively) attenuates the transfer of cytosolic Ca2+ signal, elicited by depolarisation or store-operated Ca2+ influx, into the mitochondria. The Ca2+ uptake enhancing effect of the p38 MAPK inhibitor SB202190 is due to the inhibition of p38 MAPK and not to a direct mitochondrial action. Protein kinases reduce mitochondrial [Ca2+] by inhibiting the uptake mechanism. The threshold of mitochondrial Ca2+ uptake may depend on the activity of p38 MAPK. The silencing of protein kinase D (PKD) also results in enhanced transfer of Ca2+ signal from the cytosol into the mitochondria. Our data indicate that Ca2+ mobilising agonists, through the simultaneous activation of p38 MAPK, a novel PKC isoform and PKD, exert a negative feed-forward action on mitochondrial Ca2+ uptake, thus reducing the risk of Ca2+ overload.  相似文献   

5.
Rat1 fibroblasts stably transfected with the rat angiotensin II (AngII) AT1a and bradykinin (BK) B2 receptor cDNAs gained the ability to bind Ang II and BK. Wild-type Rat1 cells bound neither ligand. Exposure to either effector led to characteristic Galphai and Galphaq signal cascades, the release of arachidonic acid (ARA), and the intracellular accumulation of inositol phosphates (IP). Microarray analyses in response to BK or AngII showed that both receptors markedly induce the CCN family genes, CTGF (CCN2) and Cyr61 (CCN1), as well as the vasculature-related genes, Cnn1 and Egr1. Real time PCR confirmed the increased expression of connective tissue growth factor (CTGF) mRNA. Combined sequence-based analysis of gene promoter regions with statistical prevalence analyses identified CREB, SRF, and ATF-1, downstream targets of ERK, and JNK, as prominent products of genes that are regulated by ligand binding to the BK or AngII receptors. The binding of AngII or BK markedly stimulated the phosphorylation and thus the activation of ERK2, JNK, and p38MAPK. A BKB2R and an AT1aR chimera which displayed only negligible G-protein-related signaling were constructed. Both mutant receptors continued to activate these kinases and stimulate CTGF expression. Inhibitors of ERK1/2 and JNK but not p38MAPK inhibited the BK- and AngII-stimulated expression of CTGF in cells expressing either the WT or mutant receptors, illustrating that ERK and JNK participate in the control of CTGF expression in a manner that appears to be independent of G-protein. Conversely, addition of BK or AngII to the cell line expressing WT AT1aR and BKB2R downregulated the expression of collagen alpha1(I) (COL1A1) mRNA. However, these effectors did not have this effect in cells expressing the mutant receptors. Thus, a robust G-protein related response is necessary for BK or AngII to affect COL1A1 expression.  相似文献   

6.
Phospholipase D (PLD) has been implicated in different cellular processes in plant growth, development, and stress responses. Recent results have provided insights into the molecular mechanism by which PLD and its lipid product phosphatidic acid (PA) participate in cell signaling. Effector proteins that have been identified for PLD and PA in plants include a heterotrimeric G protein, protein phosphatase, and protein kinase. Evidence has been presented for a direct link from a PLD, PA, to a target protein in specific physiological processes. PLD and PA play multiple roles in the signaling networks of plant response to abscisic acid and reactive oxygen species.  相似文献   

7.
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.  相似文献   

8.
Living cells oscillate between the two states of quiescence and division that stand poles apart in terms of energy requirements, macromolecular composition and structural organization and in which they fulfill dichotomous activities. Division is a highly dynamic and energy-consuming process that needs be carefully orchestrated to ensure the faithful transmission of the mother genotype to daughter cells. Quiescence is a low-energy state in which a cell may still have to struggle hard to maintain its homeostasis in the face of adversity while waiting sometimes for long periods before finding a propitious niche to reproduce. Thus, the perpetuation of single cells rests upon their ability to elaborate robust quiescent and dividing states. This led yeast and mammalian cells to evolve rigorous Start [L.H. Hartwell, J. Culotti, J. Pringle, B.J. Reid, Genetic control of the cell division cycle in yeast, Science 183 (1974) 46–51] and restriction (R) points [A.B. Pardee, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U. S. A. 71 (1974) 1286–1290], respectively, that reduce deadly interferences between the two states by enforcing their temporal insulation though still enabling a rapid transition from one to the other upon an unpredictable change in their environment. The constitutive cells of multicelled organisms are extremely sensitive in addition to the nature of their adhering support that fluctuates depending on developmental stage and tissue specificity. Metazoan evolution has entailed, therefore, the need for exceedingly flexible anchorage-dependent R points empowered to assist cells in switching between quiescence and division at various times, places and conditions in the same organism. Programmed cell death may have evolved concurrently in specific contexts unfit for the operation of a stringent R point that increase the risk of deadly interferences between the two states (as it happens notably during development). But, because of their innate flexibility, anchorage-dependent R points have also the ability to readily adjust to a changing structural context so as to give mutated cells a chance to reproduce, thereby encouraging tumor genesis. The Rb and p53 proteins, which are regulated by the two products of the Ink4a-Arf locus [C.J. Sherr, The INK4a/ARF network in tumor suppression, Nat. Rev., Mol. Cell Biol. 2 (2001) 731–737], govern separable though interconnected pathways that cooperate to restrain cyclin D- and cyclin E-dependent kinases from precipitating untimely R point transit. The expression levels of the Ink4a and Arf proteins are especially sensitive to changes in cellular shape and adhesion that entirely remodel at the time when cells shift between quiescence and division. The Arf proteins further display an extremely high translational sensitivity and can activate the p53 pathway to delay R point transit, but, only when released from the nucleolus, ‘an organelle formed by the act of building a ribosome’ [T. Mélèse, Z. Xue, The nucleolus: an organelle formed by the act of building a ribosome, Curr. Opin. Cell Biol. 7 (1995) 319–324]. In this way, the Ink4a/Rb and Arf/p53 pathways emerge as key regulators of anchorage-dependent R point transit in mammalian cells and their deregulation is, indeed, a rule in human cancers. Thus, by selecting the nucleolus to mitigate cell cycle control by the Arf proteins, mammalian cells succeeded in forging a highly flexible R point enabling them to match cell division with a growth rate imposed by factors controlling nucleolar assembling, such as nutrients and adhesion. It is noteworthy that nutrient control of critical size at Start in budding yeast has been shown recently to be governed by a nucleolar protein interaction network [P. Jorgensen, J.L. Nishikawa, B.-J. Breitkreutz, M. Tyers, Systematic identification of pathways that couple cell growth and division in yeast, Science 297 (2002) 395–400].  相似文献   

9.
Despite the variety of modern therapies against human brain cancer, in its most aggressive form of glioblastoma multiforme (GBM) it is a still deadly disease with a median survival of approximately 1 year. Over the past 2 decades, molecular profiling of low- and high-grade malignant brain tumours has led to the identification and molecular characterisation of mechanisms leading to brain cancer development, maintenance and progression. Genetic alterations occurring during gliomagenesis lead to uncontrolled tumour growth stimulated by deregulated signal transduction pathways. The characterisation of hyperactivated signalling pathways has identified many potential molecular targets for therapeutic interference in human gliomas. Overexpressed or mutated and constitutively active kinases are attractive targets for low-molecular-weight inhibitors. Although the first attempts with mono-therapy using a single targeted kinase inhibitor were not satisfactory, recent studies based on the simultaneous targeting of several core hyperactivated pathways show great promise for the development of novel therapeutic approaches. This review focuses on genetic alterations leading to the activation of key deregulated pathways in human gliomas.  相似文献   

10.
Naphthoquinone derivatives have been reported to possess various pharmacological activities, such as antiplatelet, anticancer, antifungal, and antiviral properties. In this study, we investigated the effects of a newly-synthesized naphthoquinone derivative, 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone (2-decylamino-DMNQ), on VSMC proliferation and examined the molecular basis of the underlying mechanism. In a dose-dependent manner, 2-decylamino-DMNQ inhibited PDGF-stimulated VSMC proliferation with no apparent cytotoxic effect. While 2-decylamino-DMNQ did not affect PDGF-Rβ or Akt, it did inhibit the phosphorylation of Erk1/2 and PLCγ1 induced by PDGF. Moreover, 2-decylamino-DMNQ suppressed DNA synthesis through the arrest of cell cycle progression at the G0/G1 phase, including the suppression of pRb phosphorylation and a decrease in PCNA expression, which was related to the downregulation of cell cycle regulatory factors, such as cyclin D1/E and CDK 2/4. It was demonstrated that both U0126, an Erk1/2 inhibitor, and U73122, a PLCγ inhibitor, increased the proportion of cells in the G0/G1 phase of the cell cycle. Thus, these results suggest that 2-decylamino DMNQ has an inhibitory effect on PDGF-induced VSMC proliferation and the mechanism of this action is through cell cycle arrest at the G0/G1 phase. This may be a useful tool for studying interventions for vascular restenosis in coronary revascularization procedures and stent implantation.  相似文献   

11.

Background & objectives

To analyze the reversal gene pairs and identify featured reversal genes related to mitogen-activated protein kinases (MAPK) signaling pathway and cell cycle in Glioblastoma multiforme (GBM) to reveal its pathogenetic mechanism.

Methods

We downloaded the gene expression profile GSE4290 from the Gene Expression Omnibus database, including 81 gene chips of GBM and 23 gene chips of controls. The t test was used to analyze the DEGs (differentially expressed genes) between 23 normal and 81 GBM samples. Then some perturbing metabolic pathways, including MAPK (mitogen-activated protein kinases) and cell cycle signaling pathway, were extracted from KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. Cancer genes were obtained from the database of Cancer Gene Census. The reversal gene pairs between DEGs and cancer genes were further analyzed in MAPK and cell cycle signaling pathway.

Results

A total 8523 DEGs were obtained including 4090 up-regulated and 4433 down-regulated genes. Among them, ras-related protein rab-13(RAB13), neuroblastoma breakpoint family member 10 (NBPF10) and disks large homologue 4 (DLG4) were found to be involved in GBM for the first time. We obtained MAPK and cell cycle signaling pathways from KEGG database. By analyzing perturbing mechanism in these two pathways, we identified several reversal gene pairs, including NRAS (neuroblastoma RAS) and CDK2 (cyclin-dependent kinase 2), CCND1 (cyclin D1) and FGFR (fibroblast growth factor receptor). Further analysis showed that NRAS and CDK2 were positively related with GBM. However, FGFR2 and CCND1 were negatively related with GBM.

Interpretation & conclusions

These findings suggest that newly identified DEGs and featured reversal gene pairs participated in MAPK and cell cycle signaling pathway may provide a new therapeutic line of approach to GBM.  相似文献   

12.
13.
14.
15.
16.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

17.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号