首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12‐dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT‐AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT‐AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.  相似文献   

2.
3.
4.
The mammalian spliceosome has mainly been studied using proteomics. The isolation and comparison of different splicing intermediates has revealed the dynamic association of more than 200 splicing factors with the spliceosome, relatively few of which have been studied in detail. Here, we report the characterization of the Drosophila homologue of microfibril-associated protein 1 (dMFAP1), a previously uncharacterized protein found in some human spliceosomal fractions ( Jurica, M. S., and Moore, M. J. (2003) Mol. Cell 12, 5-14 ). We show that dMFAP1 binds directly to the Drosophila homologue of Prp38p (dPrp38), a tri-small nuclear ribonucleoprotein component ( Xie, J., Beickman, K., Otte, E., and Rymond, B. C. (1998) EMBO J. 17, 2938-2946 ), and is required for pre-mRNA processing. dMFAP1, like dPrp38, is essential for viability, and our in vivo data show that cells with reduced levels of dMFAP1 or dPrp38 proliferate more slowly than normal cells and undergo apoptosis. Consistent with this, double-stranded RNA-mediated depletion of dPrp38 or dMFAP1 causes cells to arrest in G(2)/M, and this is paralleled by a reduction in mRNA levels of the mitotic phosphatase string/cdc25. Interestingly double-stranded RNA-mediated depletion of a wide range of core splicing factors elicits a similar phenotype, suggesting that the observed G(2)/M arrest might be a general consequence of interfering with spliceosome function.  相似文献   

5.
6.
Human factor C1 (HCF-1) is needed for the expression of herpes simplex virus 1 (HSV-1) immediate-early genes in infected mammalian cells. Here, we provide evidence that HCF-1 is required for spliceosome assembly and splicing in mammalian nuclear extracts. HCF-1 interacts with complexes containing splicing snRNPs in uninfected mammalian cells and is a stable component of the spliceosome complex. We show that a missense mutation in HCF-1 in the BHK21 hamster cell line tsBN67, at the non-permissive temperature, inhibits the protein's interaction with U1 and U5 splicing snRNPs, causes inefficient spliceosome assembly and inhibits splicing. Transient expression of wild-type HCF-1 in tsBN67 cells restores splicing at the non-permissive temperature. The inhibition of splicing in tsBN67 cells correlates with the temperature-sensitive cell cycle arrest phenotype, suggesting that HCF-1-dependent splicing events may be required for cell cycle progression.  相似文献   

7.
Centrioles are the major constituents of the animal centrosome, in which Plk4 kinase serves as a master regulator of the duplication cycle. Many eukaryotes also contain numerous peripheral particles known as centriolar satellites. While centriolar satellites aid centriole assembly and primary cilium formation, it is unknown whether Plk4 plays any regulatory roles in centriolar satellite integrity. Here we show that Plk4 is a critical determinant of centriolar satellite organisation. Plk4 depletion leads to the dispersion of centriolar satellites and perturbed ciliogenesis. Plk4 interacts with the satellite component PCM1, and its kinase activity is required for phosphorylation of the conserved S372. The nonphosphorylatable PCM1 mutant recapitulates phenotypes of Plk4 depletion, while the phosphomimetic mutant partially rescues the dispersed centriolar satellite patterns and ciliogenesis in cells depleted of PCM1. We show that S372 phosphorylation occurs during the G1 phase of the cell cycle and is important for PCM1 dimerisation and interaction with other satellite components. Our findings reveal that Plk4 is required for centriolar satellite function, which may underlie the ciliogenesis defects caused by Plk4 dysfunction.  相似文献   

8.
Stathmin/Oncoprotein 18, a microtubule destabilizing protein, is required for survival of p53-deficient cells. Stathmin-depleted cells are slower to enter mitosis, but whether delayed mitotic entry triggers cell death or whether stathmin has a separate pro-survival function was unknown. To test these possibilities, we abrogated the cell cycle delay by inhibiting Wee1 in synchronized, stathmin-depleted cells and found that apoptosis was reduced to control levels. Synchronized cells treated with a 4 hour pulse of inhibitors to CDK1 or both Aurora A and PLK1 delayed mitotic entry and apoptosis was triggered only in p53-deficient cells. We did not detect mitotic defects downstream of the delayed mitotic entry, indicating that cell death is activated by a mechanism distinct from those activated by prolonged mitotic arrest. Cell death is triggered by initiator caspase 8, based on its cleavage to the active form and by rescue of viability after caspase 8 depletion or treatment with a caspase 8 inhibitor. In contrast, initiator caspase 9, activated by prolonged mitotic arrest, is not activated and is not required for apoptosis under our experimental conditions. P53 upregulates expression of cFLIPL, a protein that blocks caspase 8 activation. cFLIPL levels are lower in cells lacking p53 and these levels are reduced to a greater extent after stathmin depletion. Expression of FLAG-tagged cFLIPL in p53-deficient cells rescues them from apoptosis triggered by stathmin depletion or CDK1 inhibition during G2. These data indicate that a cell cycle delay in G2 activates caspase 8 to initiate apoptosis specifically in p53-deficient cells.  相似文献   

9.
NEDDylation, a post-translational modification mediated by the conjugation of the ubiquitin-like protein Nedd8 to specific substrates, is an essential biological process that regulates cell cycle progression in eukaryotes. Here, we report the conservation of NEDDylation machinery and NEDDylated proteins in the silkworm, Bombyx mori. We have identified all the components necessary for reversible NEDDylation in the silkworm including Nedd8, E1, E2, E3, and deNEDDylation enzymes. By the approach of RNAi-mediated gene silencing, it was shown that knockdown of BmNedd8 and the conjugating enzymes decreased the global level of NEDDylation, while knockdown of deNEDDylation enzymes increased the prevalence of this modification in cultured silkworm cells. Moreover, the lack of the NEDDylation system caused cell cycle arrest at the G2/M phase and resulted in defects in chromosome congression and segregation. Using the wild-type and mutants of BmNedd8, we identified the specific substrates of BmNedd8, which are involved in the regulation for many cellular processes, including ribosome biogenesis, spliceosome structure, spindle formation, metabolism, and RNA biogenesis. This clearly demonstrates that the NEDDylation system is able to control multiple pathways in the silkworm. Altogether, the information on the functions and substrates of the NEDDylation system presented here could provide a basis for future investigations of protein NEDDylation and its regulatory mechanism on cell cycle progression in the silkworm.  相似文献   

10.
11.
DNA damage checkpoints lead to the inhibition of cell cycle progression following DNA damage. The Saccharomyces cerevisiae Mec1 checkpoint protein, a phosphatidylinositol kinase-related protein, is required for transient cell cycle arrest in response to DNA damage or DNA replication defects. We show that mec1 kinase-deficient (mec1kd) mutants are indistinguishable from mec1Delta cells, indicating that the Mec1 conserved kinase domain is required for all known Mec1 functions, including cell viability and proper DNA damage response. Mec1kd variants maintain the ability to physically interact with both Ddc2 and wild-type Mec1 and cause dominant checkpoint defects when overproduced in MEC1 cells, impairing the ability of cells to slow down S phase entry and progression after DNA damage in G(1) or during S phase. Conversely, an excess of Mec1kd in MEC1 cells does not abrogate the G(2)/M checkpoint, suggesting that Mec1 functions required for response to aberrant DNA structures during specific cell cycle stages can be separable. In agreement with this hypothesis, we describe two new hypomorphic mec1 mutants that are completely defective in the G(1)/S and intra-S DNA damage checkpoints but properly delay nuclear division after UV irradiation in G(2). The finding that these mutants, although indistinguishable from mec1Delta cells with respect to the ability to replicate a damaged DNA template, do not lose viability after UV light and methyl methanesulfonate treatment suggests that checkpoint impairments do not necessarily result in hypersensitivity to DNA-damaging agents.  相似文献   

12.
In yeast, the type 1 protein phosphatase (PP1) catalytic subunit Glc7 is involved in the regulation of multiple cellular processes and thought to achieve specificity through association with different regulatory subunits. Here, we report that the Glc7 regulator Shp1 plays important roles in cell morphogenesis, cell cycle progression and DNA damage response in Candida albicans. SHP1 deletion caused the formation of rod-shaped yeast cells with slow growth. Flow cytometry analysis revealed that shp1Δ cells showed a prolonged G(2)/M phase, which was rescued by deleting the spindle-checkpoint gene MAD2. Furthermore, shp1Δ cells were hypersensitive to heat and genotoxic stresses. Interestingly, depletion of Glc7 caused defects similar to the shp1Δ mutant such as arrest at G(2)/M transition; and the GLC7/glc7Δ heterozygous mutant exhibited increased sensitivity to genotoxic stresses, consistent with the recent finding that Saccharomyces cerevisiae Glc7 has a role in DNA damage response. We also show that Shp1 is required for the nuclear accumulation of Glc7, suggesting that Shp1 executes its cellular function partly by regulating Glc7 localization.  相似文献   

13.
14.
Thoracic ionizing radiation is a standard component of combined-modality therapy for locally advanced non-small cell lung cancer. To improve low 5-year survival rates (5- 15%), new strategies for enhancing the effectiveness of ionizing radiation are needed. The kinase inhibitor UCN-01 has multiple cell cycle effects, including abrogation of DNA damage-induced S- and G(2)-phase arrest, which may limit DNA repair prior to mitosis. To test the hypothesis that therapy-induced cell cycle effects would have an impact on the efficacy of a combination of UCN-01 plus ionizing radiation, the cell cycle responses of the non-small cell lung cancer cell lines Calu1 (TP53-null) and A549 (wild-type TP53) to 2 Gy ionizing radiation were correlated with clonogenic survival after irradiation plus UCN-01. Irradiated cells were exposed to UCN-01 simultaneously and at 3-h increments after irradiation. In Calu1 cells but not A549 cells, sequence-dependent potentiation of radiation by UCN-01 was observed, with maximal interaction occurring when UCN-01 was administered 6 h after irradiation. This coincided with the postirradiation time with the greatest depletion of cells from G(1). Abrogation of G(2) arrest was observed regardless of TP53 status. The role of TP53 was investigated using siRNA to achieve gene silencing. These studies demonstrated that radiation plus UCN-01 was more effective in cells with diminished TP53 activity, associated with a reduced G(1) checkpoint arrest. These studies indicate that simultaneous elimination of multiple DNA damage-induced checkpoints in G(1), S and G(2) may enhance the effects of radiation and that drug scheduling may have an impact on clinical efficacy.  相似文献   

15.
Orc6, an evolutionarily conserved component of the origin recognition complex, is essential for deoxyribonucleic acid (DNA) replication initiation from yeast to humans. Whether vertebrate Orc6 has a mitotic function remains unresolved. In vertebrates, but not yeast, its depletion causes centrosome amplification and multinucleate division, but replication stress indirectly causes similar abnormalities. In this paper, we exploit Varshavsky's N-end rule to create a temperature-sensitive degron form of avian Orc6. Orc6 depletion during the S phase triggers centrosome amplification suppressed by G2 checkpoint inhibition, reflecting an indirect consequence of aberrant DNA replication. However, Orc6 depletion during mitosis suffices to cause asymmetric division and failure in cytokinesis, with a delay in daughter cell abscission revealed by a fluorescence-bleaching assay. A mutant lacking the C-terminal 25 residues cannot rescue these defects. Thus, vertebrate Orc6 is necessary during mitosis for the abscission stage of cytokinesis. Our findings exemplify N-end rule degrons as tools to unravel functions of a single protein during different phases of the vertebrate cell cycle.  相似文献   

16.
The retinoblastoma protein (pRb) is a central regulator of the cell cycle, controlling passage through G1 phase. Moreover, pRb has also been shown to play a direct role in the differentiation of multiple tissues, including nerve and muscle. Rb null mice display embryonic lethality, although recent data have indicated that at least some of these defects are due to placental insufficiency. To investigate this further, we have examined the role of pRb in early development of the frog Xenopus laevis, which develops without the need for a placenta. Surprisingly, we see that loss of pXRb has no effect on either cell cycling or differentiation of neural or muscle tissue, while overexpression of pXRb similarly has no effects. We demonstrate that, in fact, pXRb is maintained in a hyperphosphorylated and therefore inactive state early in development. Therefore, Rb protein is not required for cell cycle control or differentiation in early embryos, indicating unusual control of these G1/G0 events at this developmental stage.  相似文献   

17.
The BRCA1 C-terminal (BRCT) domain has recently been implicated as a phospho-protein binding domain. We demonstrate here that a CTBP-interacting protein CtIP interacts with BRCA1 BRCT domains in a phosphorylation-dependent manner. The CtIP/BRCA1 complex only exists in G(2) phase and is required for DNA damage-induced Chk1 phosphorylation and the G(2)/M transition checkpoint. However, the CtIP/BRCA1 complex is not required for the damage-induced G(2) accumulation checkpoint, which is controlled by a separate BRCA1/BACH1 complex. Taken together, these data not only implicate CtIP as a critical player in cell cycle checkpoint control but also provide molecular mechanisms by which BRCA1 controls multiple cell cycle transitions after DNA damage.  相似文献   

18.
The program of cellular senescence is involved in both the G1 and G2 phase of the cell cycle, limiting G1/S and G2/M progression respectively, and resulting in prolonged cell cycle arrest. Cellular senescence is involved in normal wound healing. However, multiple organs display increased senescent cell numbers both during natural aging and after injury, suggesting that senescent cells can have beneficial as well as detrimental effects in organismal aging and disease. Also in the kidney, senescent cells accumulate in various compartments with advancing age and renal disease. In experimental studies, forced apoptosis induction through the clearance of senescent cells leads to better preservation of kidney function during aging. Recent groundbreaking studies demonstrate that senescent cell depletion through INK-ATTAC transgene-mediated or cell-penetrating FOXO4-DRI peptide induced forced apoptosis, reduced age-associated damage and dysfunction in multiple organs, in particular the kidney, and increased performance and lifespan. Senescence is also involved in oncology and therapeutic depletion of senescent cells by senolytic drugs has been studied in experimental and human cancers. Although studies with senolytic drugs in models of kidney injury are lacking, their dose limiting side effects on other organs suggest that targeted delivery might be needed for successful application of senolytic drugs for treatment of kidney disease. In this review, we discuss (i) current understanding of the mechanisms and associated pathways of senescence, (ii) evidence of senescence occurrence and causality with organ injury, and (iii) therapeutic strategies for senescence depletion (senotherapy) including targeting, all in the context of renal aging and disease.  相似文献   

19.
The biogenesis of the primary cilium is coordinated with cell cycle exit/re-entry in most types of cells. After serum starvation, the cilia-generating cells enter quiescence and produce the primary cilium; upon re-addition of serum, they re-enter the cell cycle and resorb the cilium. We previously identified novel mechanisms to link cell cycle progression and ciliogenesis by high-content genome-wide RNAi cell-based screening. In the present study, we pay attention to reveal the impact of mRNA splicing on cilia assembly after mitosis of cell cycle. We demonstrate that splicing regulators such as SON and XAB2 play an important role in mitosis exit, and thus affect ciliogenesis in G1/G0 phases. Knockdown of the splicing regulators in hTERT-RPE1 cells caused abnormal G2/M arrest under both serum addition and serum starvation, indicating defects in mitosis exit. Moreover, the knockdown cells failed to assemble the cilia under serum starvation and an inhibition of mRNA splicing using SSA, a spliceosome inhibitor, also revealed ciliogenesis defect. Finally, we show that the SSA-treated zebrafish display abnormal vascular development as a ciliary defect. These findings suggest the pivotal role of mRNA splicing regulators in cilia assembly and underscore the importance of mitotic regulation in ciliogenesis.  相似文献   

20.
Zinc has been shown to be required for the passage of cells through the mid-G1 phase of the cell cycle and for differentiation of myoblasts. However, it has been suggested that zinc has other roles during the cell cycle. The experiments reported here indicate that readily available zinc is not required for DNA synthesis per se but is needed for a process contemporaneous with the S phase and required for subsequent progress of the cells through G2 and mitosis. The G1 and S/G2 requirements for zinc showed virtually identical sensitivities to zinc deprivation. Each of the above requirements for zinc coincides with the induction of specific cyclin mRNAs, and the concentrations of these mRNAs have now been shown to decrease in the absence of adequate zinc. This is the first study to indicate a possible common factor underlying the requirement for available zinc during both cell replication and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号