首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases.  相似文献   

2.
c-myc induces autophagy in rat 3Y1 fibroblast cells   总被引:3,自引:0,他引:3  
The proto-oncogene c-myc is a multifunctional gene that regulates cell division, cell growth, and apoptosis. Here we report a new function of c-myc: induction of autophagy. Autophagy is a bulk degradation system for intracellular proteins. Autophagy proceeds with characteristic morphologies, which begins with the formation of a double-membrane structure called the autophagosome surrounding a portion of the cytoplasm, after which its outer membrane then fuses with the lysosomal membrane to become an autolysosome. Autophagosomes and autolysosomes are generally called autophagic vacuoles. When c-Myc protein was overexpressed in rat 3Y1 fibroblasts or when the chimeric protein c-MycER was activated by estrogen, the number of autophagic vacuoles in cells increased significantly. The formation of autophagic vacuoles induced by c-Myc was completely blocked by a specific inhibitor of autophagosome formation, 3-methyladenine. A c-Myc mutant lacking Myc Box II induced neither apoptosis nor oncogenic transformation, but still stimulated autophagy. An inhibitor of caspases suppressed apoptosis but not autophagy. These results suggest that the autophagy caused by c-myc is not due to the apoptosis or tumorigenesis induced by c-myc. Taken together, our results suggest that the induction of autophagy is a novel function of c-myc.  相似文献   

3.
王棋文  常翠芳  谷宁宁  潘翠云  徐存拴 《遗传》2015,37(11):1116-1124
自噬是存在于真核细胞内的一种溶酶体依赖性的降解途径,在肝脏生理和病理过程中发挥着重要作用。肝脏具有强大的再生能力,在受到急、慢性损伤时,残肝细胞将会被激活进入细胞周期进行细胞增殖,以补偿丢失的肝组织和恢复肝功能。文章阐述了各种类型损伤之后的肝再生与自噬的关系。在物理性、酒精、食源性等因素引起的肝损伤中,肝脏通过启动自噬来促进肝再生;在化学性损伤的肝再生模型中,自噬在其中的作用仍然有争议;在病毒感染之后的肝再生中,一些嗜肝病毒(如丙肝病毒和乙肝病毒等)反而利用自噬来促进病毒颗粒复制,抑制肝再生。对自噬和肝再生机制的研究,将有助于进一步阐明再生过程,为治疗肝脏疾病提供新方法。  相似文献   

4.
Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has been shown to have anti-inflammatory, anti-cancer, anti-steatotic effects on the liver. Autophagy also mediates similar effects; however, it is not currently known whether EGCG can regulate hepatic autophagy. Here, we show that EGCG increases hepatic autophagy by promoting the formation of autophagosomes, increasing lysosomal acidification, and stimulating autophagic flux in hepatic cells and in vivo. EGCG also increases phosphorylation of AMPK, one of the major regulators of autophagy. Importantly, siRNA knockdown of AMPK abrogated autophagy induced by EGCG. Interestingly, we observed lipid droplet within autophagosomes and autolysosomes and increased lipid clearance by EGCG, suggesting it promotes lipid metabolism by increasing autophagy. In mice fed with high-fat/western style diet (HFW; 60% energy as fat, reduced levels of calcium, vitamin D3, choline, folate, and fiber), EGCG treatment reduces hepatosteatosis and concomitantly increases autophagy. In summary, we have used genetic and pharmacological approaches to demonstrate EGCG induction of hepatic autophagy, and this may contribute to its beneficial effects in reducing hepatosteatosis and potentially some other pathological liver conditions.  相似文献   

5.
内质网应激与自噬及其交互作用影响内皮细胞凋亡   总被引:1,自引:0,他引:1  
内质网应激是普遍存在于真核细胞中的应激-防御机制。在内环境稳态遭到破坏的情况下,未折叠蛋白质反应的3条信号通路,分别通过增强蛋白质折叠能力、减少蛋白质生成和促进内质网相关蛋白质降解等途径缓解细胞内压力。同时,也通过多种分子信号机制调控细胞凋亡。自噬是一种生理性的降解机制。通过形成自噬泡并与溶酶体结合摄取并水解胞内受损细胞器和蛋白质等,清除代谢废物,维持细胞正常功能。自噬缺陷或过度激活均可导致细胞凋亡或非程序性死亡。自噬的程度和细胞内压力水平有关。内质网应激通过未折叠蛋白质反应和Ca2+浓度变化及其相关分子信号调控自噬。自噬又可反馈性调节内质网应激反应,二者相互作用,在内皮细胞凋亡过程中发挥重要作用。未来内质网应激和自噬可作为药物靶点为内皮相关性疾病提供诊疗策略。  相似文献   

6.
Macroautophagy hereafter referred to as autophagy is a major lysosomal catabolic pathway for macromolecules and organelles conserved in eukaryotic cells. The discovery of the molecular basis of autophagy has uncovered its importance during development, life extension and in pathologies such as cancer, certain forms of myopathies and neurodegenerative diseases. Autophagy is a cell survival mechanism during starvation that is controlled by amino acids. Starvation-induced autophagy is an anti-apoptotic mechanism. However autophagy is also an alternative to apoptosis through autophagic cell death. In many situations apoptosis and autophagy can both contribute to cell dismantlement.  相似文献   

7.
Autophagy is a mechanism of protection against various forms of human diseases, such as cancer, in which autophagy seems to have an extremely complex role. In cancer, there is evidence that autophagy may be oncogenic in some contexts, whereas in others it clearly contributes to tumor suppression. In addition, studies have demonstrated the existence of a complex relationship between autophagy and cell death, determining whether a cell will live or die in response to anticancer therapies. Nevertheless, we still need to complete the autophagy–apoptosis puzzle in the tumor context to better address appropriate chemotherapy protocols with autophagy modulators. Generally, tumor cell resistance to anticancer induced-apoptosis can be overcome by autophagy inhibition. However, when an extensive autophagic stimulus is activated, autophagic cell death is observed. In this review, we discuss some details of autophagy and its relationship with tumor progression or suppression, as well as role of autophagy–apoptosis in cancer treatments.  相似文献   

8.
9.
Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuronal loss in Parkinson disease. In addition to autophagy''s significance in mitochondrial integrity, several lines of evidence suggest that mitochondria can also substantially influence the autophagic process. The mitochondria''s ability to influence and be influenced by autophagy places both elements (mitochondria and autophagy) in a unique position where defects in one or the other system could increase the risk to various metabolic and autophagic related diseases.Key words: autophagy, mitochondria, fission, fusion, apoptosis  相似文献   

10.
Autophagy is a cellular survival pathway that recycles intracellular components to compensate for nutrient depletion and ensures the appropriate degradation of organelles. Mitochondrial number and health are regulated by mitophagy, a process by which excessive or damaged mitochondria are subjected to autophagic degradation. Autophagy is thus a key determinant for mitochondrial health and proper cell function. Mitophagic malfunction has been recently proposed to contribute to progressive neuronal loss in Parkinson's disease. In addition to autophagy's significance in mitochondrial integrity, several lines of evidence suggest that mitochondria can also substantially influence the autophagic process. The mitochondria's ability to influence and be influenced by autophagy places both elements (mitochondria and autophagy) in a unique position where defects in one or the other system could increase the risk to various metabolic and autophagic related diseases.  相似文献   

11.
Transient ischaemia and reperfusion in liver tissue induce hepatic ischaemia/reperfusion (I/R) tissue injury and a profound inflammatory response in vivo. Hepatic I/R can be classified into warm I/R and cold I/R and is characterized by three main types of cell death, apoptosis, necrosis and autophagy, in rodents or patients following I/R. Warm I/R is observed in patients or animal models undergoing liver resection, haemorrhagic shock, trauma, cardiac arrest or hepatic sinusoidal obstruction syndrome when vascular occlusion inhibits normal blood perfusion in liver tissue. Cold I/R is a condition that affects only patients who have undergone liver transplantation (LT) and is caused by donated liver graft preservation in a hypothermic environment prior to entering a warm reperfusion phase. Under stress conditions, autophagy plays a critical role in promoting cell survival and maintaining liver homeostasis by generating new adenosine triphosphate (ATP) and organelle components after the degradation of macromolecules and organelles in liver tissue. This role of autophagy may contribute to the protection of hepatic I/R-induced liver injury; however, a considerable amount of evidence has shown that autophagy inhibition also protects against hepatic I/R injury by inhibiting autophagic cell death under specific circumstances. In this review, we comprehensively discuss current strategies and underlying mechanisms of autophagy regulation that alleviates I/R injury after liver resection and LT. Directed autophagy regulation can maintain liver homeostasis and improve liver function in individuals undergoing warm or cold I/R. In this way, autophagy regulation can contribute to improving the prognosis of patients undergoing liver resection or LT.  相似文献   

12.
Self-eating and self-killing: crosstalk between autophagy and apoptosis   总被引:3,自引:0,他引:3  
The functional relationship between apoptosis ('self-killing') and autophagy ('self-eating') is complex in the sense that, under certain circumstances, autophagy constitutes a stress adaptation that avoids cell death (and suppresses apoptosis), whereas in other cellular settings, it constitutes an alternative cell-death pathway. Autophagy and apoptosis may be triggered by common upstream signals, and sometimes this results in combined autophagy and apoptosis; in other instances, the cell switches between the two responses in a mutually exclusive manner. On a molecular level, this means that the apoptotic and autophagic response machineries share common pathways that either link or polarize the cellular responses.  相似文献   

13.
自噬是细胞的一种正常的生理活动,参与细胞内损伤的蛋白质和亚细胞器经溶酶体途径降解的过程。自噬可以抵御外界的不良环境,在多种疾病中起着重要作用。近年来,大量研究表明自噬在细胞新陈代谢和生理功能上有双重作用,在疾病发生的不同时期,自噬起到不同的作用。通常情况自噬可以及时的清除细胞内损伤的蛋白质,作为一种细胞的保护机制,但是自噬的持续活化,导致细胞内大量蛋白质的降解,使细胞无法维持其基本结构,最终将导致细胞坏死或凋亡。自噬、凋亡和坏死的转化,很有可能受到p53、Bcl-2、Beclin-1、ATG5、TG2及p62等信号分子调控。肝脏和心脏是维持人体生命活动的重要器官,自噬在脂肪肝、肝硬化、心肌梗塞及心脏衰竭等疾病中扮演着重要的角色。本文总结了自噬、凋亡及坏死的相互关系,自噬在疾病中的双重作用,并重点介绍自噬在肝脏和心脏疾病中的作用。  相似文献   

14.
Autophagy is a lysosome‐mediated degradation pathway used by eukaryotes to recycle cytosolic components in both basal and stress conditions. Several genes have been described as regulators of autophagy, many of them being evolutionarily conserved from yeast to mammals. The study of autophagy‐defective model systems has made it possible to highlight the importance of correctly functioning autophagic machinery in the development of invertebrates as, for example, during the complex events of fly and worm metamorphosis. In vertebrates, on the other hand, autophagy defects can be lethal for the animal if the mutated gene is involved in the early stages of development, or can lead to severe phenotypes if the mutation affects later stages. However, in both lower and higher eukaryotes, autophagy seems to be crucial during embryogenesis by acting in tissue remodeling in parallel with apoptosis. An increase of autophagic cells is, in fact, observed in the embryonic stages characterized by massive cell elimination. Moreover, autophagic processes probably protect cells during metabolic stress and nutrient paucity that occur during tissue remodeling. In light of such evidence, it can be concluded that there is a close interplay between autophagy and the processes of cell death, proliferation and differentiation that determine the development of higher eukaryotes.  相似文献   

15.
《Autophagy》2013,9(2):235-237
Autophagy serves a critical function in cellular homeostasis by prolonging survival during nutrient deprivation. Although primarily characterized as a cell survival mechanism, the relationship between autophagy and cell death pathways remains incompletely understood. Autophagy has heretofore not been studied in the context of human pulmonary disease. We have recently observed increased morphological and biochemical markers of autophagy in human lung tissue from patients with chronic obstructive pulmonary disease (COPD). Similar observations of increased autophagy were also made in mouse lung tissue subjected to chronic cigarette smoke exposure, a primary causative agent in COPD, and in pulmonary cells exposed to aqueous cigarette smoke extract. Since knockdown of autophagic regulator proteins inhibited apoptosis in response to cigarette smoke exposure in vitro, we concluded that increased autophagy was associated with increased cell death in this model. We hypothesize that increased autophagy contributes to COPD pathogenesis by promoting epithelial cell death. Further research will examine whether autophagy plays a causative, correlative, or protective role in specific lung pathologies.  相似文献   

16.
《Autophagy》2013,9(10):1239-1241
Autophagy is often found in apoptosis-defective cancer cells and contributes to chemotherapy resistance. However, it is far from clear how the coordination of apoptosis and autophagy determines sensitivity of cancer cells to chemotherapy. Our recent study showed that Beclin 1, a key regulator of autophagy, is cleaved by caspase 8 at the execution stage of chemotherapy-induced and mitochondria-mediated apoptosis. Perturbation of Beclin 1 cleavage, by knock-in of a mutation, phenocopies the autophagy observed in apoptosis-defective cancer cells, and renders chemotherapy resistance in vitro and in vivo. These results demonstrate an important role of caspases in suppressing autophagy by cleaving autophagic machinery.  相似文献   

17.
Li H  Wang P  Yu J  Zhang L 《Autophagy》2011,7(10):1239-1241
Autophagy is often found in apoptosis-defective cancer cells and contributes to chemotherapy resistance. However, it is far from clear how the coordination of apoptosis and autophagy determines sensitivity of cancer cells to chemotherapy. Our recent study showed that Beclin 1, a key regulator of autophagy, is cleaved by caspase 8 at the execution stage of chemotherapy-induced and mitochondria-mediated apoptosis. Perturbation of Beclin 1 cleavage, by knock-in of a mutation, phenocopies the autophagy observed in apoptosis-defective cancer cells, and renders chemotherapy resistance in vitro and in vivo. These results demonstrate an important role of caspases in suppressing autophagy by cleaving autophagic machinery.  相似文献   

18.
Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity.  相似文献   

19.
The balance between protein and lipid biosynthesis and their eventual degradation is a critical component of cellular health. Autophagy, the catabolic process by which cytoplasmic material becomes degraded in lysosomes, can be induced by various physiological stimuli to maintain cellular homeostasis. Autophagy was for a long time considered a non-selective bulk process, but recent data have shown that unwanted components such as aberrant protein aggregates, dysfunctional organelles and invading pathogens can be selectively eliminated by autophagy. Recently, also intracellular lipid droplets were described as specific autophagic cargo, indicating that autophagy plays a role in lipid metabolism and storage (Singh et al., 2009 [1]). Moreover, over the past several years, it has become increasingly evident that lipids and lipid-modifying enzymes play important roles in the autophagy process itself, both at the level of regulation of autophagy and as membrane constituents required for formation of autophagic vesicles. In this review, we will discuss the interplay between lipids and autophagy, as well as the role of lipid-binding proteins in autophagy. We also comment on the possible implications of this mutual interaction in the context of disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

20.
Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules, which are then recycled back into the cytosol. In this respect, autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle. Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions. Current research clearly shows that autophagy fulfills numerous functions in vital biological processes. It is implicated in development, differentiation, innate and adaptive immunity, ageing and cell death. In addition, accumulating evidence demonstrates interesting links between autophagy and several human diseases and tumor development. Therefore, autophagy seems to be an important player in the life and death of cells and organisms. Despite the mounting knowledge about autophagy, the mechanisms through which the autophagic machinery regulates these diverse processes are not entirely understood. In this review, we give a comprehensive overview of the autophagic signaling pathway, its role in general cellular processes and its connection to cell death. In addition, we present a brief overview of the possible contribution of defective autophagic signaling to disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号