首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The ability of deuteromycetes of the genera Penicillium, Aspergillus, and Botrytis to retain collagenolytic activity was studied after both 2 and 10 years of storage on a Czapek medium under a layer of mineral oil at 4 degrees C, as well as in silica gel granules at 20 and -60 degrees C. The enzymatic activity of several species, including Botrytis terrestris, Penicillium janthinellum, Penicillium chrysogenum, and Penicillium citrinum, was retained under both conditions of storage. Aspergillus repens retained enzymatic activity only if stored under a layer of mineral oil. The viability of conidia and the collagenolytic activity of Botrytis terrestris, P. janthinellum, P. chrysogenum, and Penicillium citrinum, maintained on silica gel for 10 years, depended on the storage temperature. The viability of the test strains improved after storage on a silica gel at -60 degrees C. A strain of Aspergillus repens lost its ability to dissolve collagen at various storage temperatures on the silica gel. The index of lysis for three strains of Penicillium deuteromycetes (Penicillium janthinellum, Penicillium chrysogenum, and Penicillium citrinum) increased after a 10-year storage on silica gel at -60 degrees C.  相似文献   

2.
An extracellular protease from Penicillium chrysogenum (Pg222) isolated from dry-cured ham has been purified. The purification procedure involved several steps: ammonium sulfate precipitation, ion-exchange chromatography, filtration, and separation by high-performance liquid chromatography. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and gel filtration, the purified fraction showed a molecular mass of about 35 kDa. The hydrolytic properties of the purified enzyme (EPg222) on extracted pork myofibrillar proteins under several conditions were evaluated by SDS-PAGE. EPg222 showed activity in the range of 10 to 60°C in temperature, 0 to 3 M NaCl, and pH 5 to 7, with maximum activity at pH 6, 45°C, and 0.25 M NaCl. Under these conditions the enzyme was most active against tropomyosin, actin, and myosin. EPg222 showed collagenolytic activity but did not hydrolyze myoglobin. EPg222 showed higher activity than other proteolytic enzymes like papain, trypsin, and Aspergillus oryzae protease. The N-terminal amino acid sequence was determined and was found to be Glu-Asn-Pro-Leu-Gln-Pro-Asn-Ala-Pro-Ser-Trp. This partial amino acid sequence revealed a 55% homology with serine proteases from Penicillium citrinum. The activity of this novel protease may be of interest in ripening and generating the flavor of dry-cured meat products.  相似文献   

3.
Siderophore producing potential of 20 fungal isolates (same 10 species from each marine and terrestrial habitat) were examined and compared. Except marine Aspergillus flavus, all isolates produced siderophores as evidenced by positive reaction in FeCl3 test, CAS assay and CAS agar plate test. The results indicated widespread occurrence of siderophores in both the habitats. Examination of the chemical nature of siderophores revealed that mucoraceous fungi produced carboxylate, while others produced hydroxamate siderophores. Thus, the nature of siderophore was found to be independent of habitat. Among all the isolates, Cunninghamella elegans (marine form) was maximum siderophore producer (1987.5 μg/ml) followed by terrestrial form of C. elegans (1248.75 μg/ml). There was no marked variation in siderophore concentration of Penicillium funiculosum strains. Comparison of quantification of siderophore production between marine and terrestrial revealed that four terrestrial isolates (Aspergillus niger, Aspergillus ochraceous, Penicillium chrysogenum, Penicillium citrinum) were ahead in siderophore production, while, the other four marine isolates (Aspergillus versicolor, C. elegans, Rhizopus sp., Syncephalastrum racemosum) were found to be more potent siderophore producers, indicating that they were equally competent.  相似文献   

4.
The formation of enlarged cells and other abnormalities of mycelium and conidiophores occurring inAspergillus flavus Link,Penicillium chrysogenum Thom,Penicillium notatum Westling,Penicillium variabile Sopp.,Scopularipsis brevicaulis Bainier,Fusarium moniliforme Sheld.,Botrytis cinera Pers. ex Fr.,Botrytis allii Rud.,Humicola brunnea var.africana Fass. andTritirachium heimii var.grisea Fass. under the influence of uranium acetate, radioactive sediment from P?íbram mines (uranium mines in P?íbram, Bohemia), fungicidal compounds (fungizon, fungistatin, nitrofungin), antibiotic nystatin and antifungal bacteriumBacillus subtilis Cohn emend. Prazmowski were investigated. Enlarged phialides or phialides with extended orifices and collarettes and occasionally a conversion of phialides to spherical enlarged cells were observed inAspergillus flavus grown on a Sabouraud agar supplemented with uranium acetate. InPenicillium chrysogenum some conidiophores were completely reduced to enlarged cells. Less abnormalities were observed on the Czapek-Dox agar. The radioactive sediment as a component of malt agar caused either complete reduction of conidiophores inAspergillus flavus to dichotomously branched hyphae or sometimes only an enlargement of phialides. The antifungal effect ofBacillus subtilis was demonstrated in all studied strains. Enlarged cells instead of whole conidiophores were formed under the influence of the bacterium. This effect was observed inBotrytis allii, Botrytis cinerea and to a lesser extent inPenicillium notatum, Aspergillus flavus andFusarium moniliforme. The enlarged cells could still germinate and can be considered as reduced conidiophores. The used fungicidal compounds and the antibiotic nystatin inhibited to a certain degree the studied strains, however, their application did not bring about any abnormalities of mycelium and conidiophores.  相似文献   

5.
6.
Sixty-nine species and four varieties that belong to 28 genera of terrestial fungi were recovered from polluted and non-polluted water and mud samples on glucose and cellulose-Czapek's agar at 28°C. The most common species from the two substrates on the two types of media were Aspergillus flavus, A. fumigatus, A.niger, Cladosporium cladosporioides, Fusarium oxysporum, Mycosphaerella tassiana and Penicillium chrysogenum. Twenty-six species belonging to 14 genera were isolated from polluted (26 species and 14 genera) and non-polluted (17species and 10 genera) mud samples on Sabouraud's dextrose agar at 28°C. The most prevalent species were Acremonium retiulum, Alternaria alternata, Aspergillus flavus, Aphanoascus fulvescens, A. terreus, Aphanoascus sp., Penicillium funiculosum and Stachybotrys chartarum.  相似文献   

7.
Mycelial fungi Penicillium funiculosum, P. citrinum, P. expansum, P. chrysogenum, Aspergillus ochraceus, A. alliaceus, A. luchaensis, A. flavus, and A. niger were isolated from enrichment cultures. These fungi actively destruct carbon deposits formed during operation of aircraft. A biotechnological method for removing fouling from parts of aircraft engines (PAE) was developed. This method is less laborious, more rapid, and ecologically cleaner than contemporary chemical methods. Scanning microscopy was suggested for estimating the degree of decarbonization of PAE surfaces.  相似文献   

8.
9.
Filamentous fungi secrete diverse peptidases with different biochemical properties, which is of considerable importance for application in various commercial sectors. In this study, we describe the isolation of two fungal species collected from the soil of decayed organic matter: Aspergillus fischeri and Penicillium citrinum. In a submerged bioprocess, we observed better peptidase production with the fungus P. citrinum, which reached a peak production at 168?h with 760?U/mL, in comparison with the fungus A. fischeri, which reached a peak production at 72?h with 460?U/mL. In both situations, the fermentative medium contained 0.5% crushed feathers as a source of nitrogen. On performing biochemical characterization, we detected two alkaline serine peptidases: The one secreted by P. citrinum had optimal activity at pH 7.0 and at 45°C, while the one secreted by A. fischeri had optimal activity in pH 6.5–8 and at 55–60°C. Metallic ions were effective in modulating these peptidases; in particular, Cu2+ promoted negative modulation of both peptidases. The peptidases were stable and functional under conditions of nonionic surfactants, temperatures up to 45°C for 1?h, and incubation over a wide pH range. In addition, it was observed that both peptidases had the capacity to hydrolyze collagen and performed well in removing an egg protein stain when supplemented into a commercial powder detergent; this was especially true for the peptidase from P. citrinum.  相似文献   

10.
Bacillus coagulans TQ33, isolated from skimmed milk powder, displays strong antifungal activity against plant pathogenic fungi. The antifungal compound of the B. coagulans TQ33 culture was extracted by thin-layer chromatography and column chromatography, and its structure was elucidated based on HPLC, LC-MS, and NMR analysie. The antifungal compound was identified as phenyllactic acid (PLA), and it was found to have a minimum inhibitory concentration on Phytophthora drechsleri Tucker of 18 mg/mL. Bio-control activity tests indicated that PLA has a wide spectrum of antagonistic effects against Fusarium oxysporum, Botrytis cinerea, Glomerella cingulata, Penicillium citrinum, Penicillium digitatum, particularly against F. oxysporum. PLA is the most notable antimicrobial compound with broad and effective antimicrobial activity against both bacteria and fungi that has been isolated and identified to date. These results indicate that B. coagulans TQ33 has the potential for application in biological pesticides.  相似文献   

11.
The effect of growth temperature on the lipid fatty acid composition was studied over a temperature range from 35 to 10° C with 5° C intervals in four exponentially growing fungi: Aspergillus niger, Neurospora crassa, Penicillium chrysogenum, and Trichoderma reesei. Fatty acid unsaturation increased in A. niger, P. chrysogenum, and T. reesei when the temperature was lowered to 20–15, 20, and 26–20° C, respectively. In A. niger and T. reesei, this was due to the increase in linolenic acid content. In P. chrysogenum, the linolenic acid content increased concomitantly with a more pronounced decrease in the less-unsaturated fatty acid, oleic acid, and in palmitic and linoleic acids; consequently, the fatty acid content decreased as the temperature was lowered to 20° C. In T. reesei, when the growth temperature was reduced below 26–20° C, fatty acid unsaturation decreased since the mycelial linolenic acid content decreased. In A. niger and P. chrysogenum, the mycelial fatty acid content increased greatly at temperatures below 20–15° C. In contrast, in N. crassa, fatty acid unsaturation was nearly temperature-independent, although palmitic and linoleic acid contents clearly decreased when the temperature was lowered between 26 and 20° C; concomitantly, the growth rate decreased. Therefore, large differences in the effects of growth temperature on mycelial fatty acids were observed among various fungal species. However, the similarities found may indicate common regulatory mechanisms causing the responses. Received: 1 March 1995 / Accepted: 8 May 1995  相似文献   

12.
A total of 54 lactic acid bacteria (LAB) were isolated from stored wheat samples sourced from grain silos in North Tunisia. Fifteen representative isolates were identified by 16S rDNA sequencing as Pediococcus pentosaceus, Lactobacillus plantarum, Lactobacillus graminis, Lactobacillus coryniformis and Weissella cibaria. These isolates were screened for antifungal activity in dual culture agar plate assay against eight post-harvest moulds (Penicillium expansum, Penicillium chrysogenum, Penicillium glabrum, Aspergillus flavus, Aspergillus niger, Aspergillus carbonarius, Fusarium graminearum and Alternaria alternata). All LAB showed inhibitory activity against moulds, especially strains of L. plantarum which exhibited a large antifungal spectrum. Moreover, LAB species such as L. plantarum LabN10, L. graminis LabN11 and P. pentosaceus LabN12 showed high inhibitory effects against the ochratoxigenic strain A. carbonarius ANC89. These LAB were also investigated for their ability to reduce A. carbonarius ANC89 biomass and its ochratoxin A (OTA) production on liquid medium at 28 and 37 °C and varied pH conditions. The results indicated that factors such as temperature, pH and bacterial biomass on mixed cultures, has a significant effect on fungal inhibition and OTA production. High percentage of OTA reduction was obtained by L. plantarum and L. graminis (>97%) followed by P. pentosaceus (>81.5%). These findings suggest that in addition to L. plantarum, L. graminis and P. pentosaceus strains may be exploited as a potential OTA detoxifying agent to protect humans and animals health against this toxic metabolite.  相似文献   

13.
Non-ribosomal peptides (NRPs) are a diverse family of secondary metabolites with a broad range of biological activities. We started to develop an eukaryotic microbial platform based on the yeast Saccharomyces cerevisiae for heterologous production of NRPs using δ-(l-α-aminoadipyl)–l-cysteinyl–d-valine (ACV) as a model NRP. The Penicillium chrysogenum gene pcbAB encoding ACV synthetase was expressed in S. cerevisiae from a high-copy plasmid together with phosphopantetheinyl transferase (PPTase) encoding genes from Aspergillus nidulans, P. chrysogenum and Bacillus subtilis, and in all the three cases production of ACV was observed. To improve ACV synthesis, several factors were investigated. Codon optimization of the 5′ end of pcbAB did not significantly increase ACV production. However, a 30-fold enhancement was achieved by lowering the cultivation temperature from 30 to 20 °C. When ACVS and PPTase encoding genes were integrated into the yeast genome, a 6-fold decrease in ACV production was observed indicating that gene copy number was one of the rate-limiting factors for ACV production in yeast.  相似文献   

14.
Original data on the growth parameters of the fungi Penicillium chrysogenum Thom, Aspergillus repens (Corda) Sacc., and Trichoderma viride Pers. isolated from living spaces in Moscow are presented. Spore germination, fungal growth, and the radial growth rate of the colonies were investigated upon cultivation on agarized nutrient media with different water activity (aw) values. Spore germination and fungal growth were studied in house dust under laboratory conditions at different relative air humidity (RH). It was shown that, at decreased aw and RH, the spore germination time increased, as did the period from germination to mycelium and conidia formation, while the radial growth rate of colonies decreased. House dust was found to be a suitable growth substrate for A. repens and P. chrysogenum, supporting their complete life cycle. It was suggested that house dust is unsuitable as a substrate for the growth of T. viride. The aw and RH ranges for development of these micromycetes were determined. On this basis, the A. repens, P. chrysogenum, and T. viride strains isolated from living spaces were identified as xerophilic, xerotolerant, and hygrophilic ones, respectively.  相似文献   

15.
Fungi causes most plant disease. When fruits are stored at suboptimal conditions, fungi grows, and some produce mycotoxin which can be dangerous for human consumption. Studies have shown that the Penicillium and Monilinia species commonly cause spoilage of fruits, especially apples. Several other genera and species were reported to grow to spoil fruits. This study was conducted to isolate and identify fruit spoilage by fungi on apples collected in Riyadh, Saudi Arabia and conduct a molecular identification of the fungal isolates. Thus, we collected 30 samples of red delicious and Granny Smith apples with obvious spoilage from different supermarkets between February and March of 2012 in Riyadh, Saudi Arabia. Each apple was placed in a sterile plastic bag in room temperature (25–30 °C) for six days or until fungal growth was evident all over the sample. Growth of fungal colonies on PDA was counted and sent for molecular confirmation by PCR. Six fruit spoilage fungi were isolated, including Penicillium chrysogenum, Penicillium adametzii, Penicillium chrysogenum, Penicillium steckii, Penicillium chrysogenum, and Aspergillus oryzae. P. chrysogenum was the most frequent isolate which was seen in 14 of a total of 34 isolates (41.2%), followed by P. adametzii and A. oryzae with seven isolates each (20.6%) and the least was P. steckii with six isolates (17.6%). Penicillium species comprised 27 of the total 34 (79.4%) isolates. Sequence analysis of the ITS regions of the nuclear encoded rDNA showed significant alignments for P. chrysogenum, P. adametzii and A. oryzae. Most of these fungal isolates are useful and are rarely pathogenic; however they can still produce severe illness in immune-compromised individuals, and sometimes otherwise healthy people may also become infected. It is therefore necessary to evaluate the possible production of mycotoxins by these fungi to determine a potential danger and to establish its epidemiology in order to develop adequate methods of control.  相似文献   

16.
Penicillium chrysogenum is not only an industrially important filamentous fungus for penicillin production, but it also represents as a promising cell factory for production of natural products. Development of efficient transformation systems with suitable selection markers is essential for genetic manipulations in P. chrysogenum. In this study, we have constructed a new and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system with two different selection markers conferring the resistance to nourseothricin and phleomycin for P. chrysogenum. Under the optimized conditions for co-cultivation at 22 °C for 60 h with acetosyringone concentration of 200 μM, the transformation efficiency of the ATMT system could reach 5009 ± 96 transformants per 106 spores. The obtained transformants could be exploited as the T-DNA insertion mutants for screening genes involved in morphogenesis and secondary metabolism. Especially, the constructed ATMT system was applied successfully to generate a knockout mutant of the laeA regulatory gene and relevant complementation strains in a wild strain of P. chrysogenum. Our results indicated that the LaeA regulator controls growth, sporulation, osmotic stress response and antibiotic production in P. chrysogenum, but its function is reliant on nitrogen sources. Furthermore, we showed that the laeA orthologous genes from the citrus postharvest pathogen P. digitatum and from the industrial fungus Aspergillus niger could recover the phenotypic defects in the P. chrysogenum laeA deletion mutant. Conclusively, this work provides a new ATMT system, which can be employed for T-DNA insertional mutagenesis, heterologous gene expression or for molecular inspections of potential genes related to secondary metabolism in P. chrysogenum.  相似文献   

17.
Aspergillus niger LOCK 62 produces an antifungal chitinase. Different sources of chitin in the medium were used to test the production of the chitinase. Chitinase production was most effective when colloidal chitin and shrimp shell were used as substrates. The optimum incubation period for chitinase production by Aspergillus niger LOCK 62 was 6?days. The chitinase was purified from the culture medium by fractionation with ammonium sulfate and affinity chromatography. The molecular mass of the purified enzyme was 43?kDa. The highest activity was obtained at 40?°C for both crude and purified enzymes. The crude chitinase activity was stable during 180?min incubation at 40?°C, but purified chitinase lost about 25?% of its activity under these conditions. Optimal pH for chitinase activity was pH 6–6.5. The activity of crude and purified enzyme was stabilized by Mg2+ and Ca2+ ions, but inhibited by Hg2+ and Pb2+ ions. Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: Fusarium culmorum, Fusarium solani and Rhizoctonia solani. The growth of Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum was not affected.  相似文献   

18.
A systemic study of fungal endophytes associated with different plant parts of Cannabis sativa and their antifungal activity was investigated in the present study. A total of 281 plant segments, including 91 leaves, 93 stem and 97 petioles samples, were screened for the isolation of endophytic fungi. Totally, 212 (77.65%) segments were found colonised by different fungi. Highest colonisation frequency were observed in stem parts (84.94%), then leaves (82.41%) and lowest 59.79% in petiole. Total eight fungal genera belonging to 12 species were isolated. Aspergillus is recorded as the most frequently occurring genera with three species Aspergillus niger, Aspergillus flavus and Aspergillus nidulans followed by Penicillium with two species Penicillium chrysogenum and Penicillium citrinum, while Phoma, Rhizopus, Colletotrichum, Cladosporium and Curvularia with single species. The antifungal potential of A. niger and A. flavus – two most frequently isolated endophytic fungi – was evaluated against two common plant pathogen, Colletotrichum gloeosporioides and Curvularia lunata. Different plant and fungal extracts individually and in combinations showed variations in antifungal activity against both the pathogens. The primary results obtained on antifungal activity of endophytes show their possible role in plant defence mechanism but it is a preliminary approach and more extensive research is still required.  相似文献   

19.
This study aimed to describe the diversity of antifungal lactic acid bacteria (LAB) in popular traditional Korean fermented food. A total of 22 LAB strains was selected and subjected to a monophasic identical approach using 16S rRNA gene sequence analysis. Antifungal LAB associated with fermented food was identified as Lactobacillus plantarum (9), Lactobacillus graminis (5), Lactobacillus pentosus (4), Lactobacillus sakei (2), Lactobacillus paraplantarum (1), and Leuconostoc mesenteroides subsp. mesenteroides (1). Novel Lactobacillus plantarum strain K46 exhibited comparatively better antifungal activity against several spoilage fungi, and was deposited in the Korean Collection for Type Cultures (KACC91758P). Antifungal substances from the spent medium in which K46 was cultivated were extracted with ethyl acetate. Antifungal activity was assessed using the broth micro dilution technique. Compounds were characterized based on infrared, 13C nuclear magnetic resonance (NMR), and 1H NMR spectral data. The minimum inhibitory concentration (MIC) of the compounds against Aspergillus clavatus, Aspergillus oryzae, Penicillium chrysogenum and Penicillium roqueforti was 2.5 mg/mL and that against Aspergillus fumigatus, Aspergillus niger, Curvularia lunata and Gibberella moniliformis was 5.0 mg/mL. K46 was able to survive gastrointestinal conditions simulating the stomach and the duodenum passage with the highest percentage of hydrophobicity. In addition, its resistance to hydrogen peroxide and highest hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities, with inhibition rates of 43.53 % and 56.88 %, respectively, were to its advantage. An antimicrobial susceptibility pattern was an intrinsic feature of this strain, thus consumption does not represent a health risk to humans. The results showed the potential of K46 strain as an antifungal, probiotic and antioxidant culture, and hence it was determined to be suitable for application in functional foods.  相似文献   

20.
A large-scale screen of some 7,000 presumptive lactic acid bacteria (LAB), isolated from animal, human, or plant origin, identified 1,149 isolates with inhibitory activity against the food-spoilage mould Penicillium expansum. In excess of 500 LAB isolates were subsequently identified to produce a broad spectrum of activity against P. expansum, Penicillium digitatum, Penicillium notatum, Penicillium roqueforti, Rhizopus stolonifer, Fusarium culmorum, Aspergillus fumigatus and Rhodotorula mucilaginosa. Partial 16S rRNA sequencing of 94 broad spectrum isolates revealed that the majority of antifungal producers were strains of Lactobacillus plantarum. The remaining population was composed of Weissella confusa and Pediococcus pentosaceous isolates. Characterization of six selected broad-spectrum antifungal LAB isolates revealed that antifungal activity is maximal at a temperature of 30 °C, a pH of 4.0 and is stable across a variety of salt concentrations. The antifungal compound(s) was shown to be neither proteinaceous nor volatile in nature. P. pentosaceous 54 was shown to have protective properties against P. expansum spoilage when applied in pear, plum and grape models, therefore representing an excellent candidate for food-related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号