首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanisms of genome evolution are poorly understood although recent genome sequencing is providing the tools to begin to illuminate such mechanisms. Using high-resolution molecular cytogenetic tools, we examined the structural evolution of 790 kb surrounding the evolutionarily important FLC locus of Arabidopsis thaliana in three of its relatives, Arabidopsis halleri, Arabidopsis neglecta and Arabidopsis arenosa. Sequenced BACs from A. thaliana were used as heterologous probes across these species and genome expansion was found in all three species relative to A. thaliana, ranging from 16 to 27%. Expansion was seen along the length of the entire region but molecular analyses revealed no characteristic pattern of either intra- or intergenic expansion among these species. Mapping of BACs on DNA fibers from A. thaliana revealed one possible error, ~14 kb missing from the reported sequence, indicating that for comparative studies it is important to confirm the reference sequence to which comparison will be made.  相似文献   

2.
Genome-wide association (GWA) analyses have generally been used to detect individual loci contributing to the phenotypic diversity in a population by the effects of these loci on the trait mean. More rarely, loci have also been detected based on variance differences between genotypes. Several hypotheses have been proposed to explain the possible genetic mechanisms leading to such variance signals. However, little is known about what causes these signals, or whether this genetic variance-heterogeneity reflects mechanisms of importance in natural populations. Previously, we identified a variance-heterogeneity GWA (vGWA) signal for leaf molybdenum concentrations in Arabidopsis thaliana. Here, fine-mapping of this association reveals that the vGWA emerges from the effects of three independent genetic polymorphisms that all are in strong LD with the markers displaying the genetic variance-heterogeneity. By revealing the genetic architecture underlying this vGWA signal, we uncovered the molecular source of a significant amount of hidden additive genetic variation or “missing heritability”. Two of the three polymorphisms underlying the genetic variance-heterogeneity are promoter variants for Molybdate transporter 1 (MOT1), and the third a variant located ~25 kb downstream of this gene. A fourth independent association was also detected ~600 kb upstream of MOT1. Use of a T-DNA knockout allele highlights Copper Transporter 6; COPT6 (AT2G26975) as a strong candidate gene for this association. Our results show that an extended LD across a complex locus including multiple functional alleles can lead to a variance-heterogeneity between genotypes in natural populations. Further, they provide novel insights into the genetic regulation of ion homeostasis in A. thaliana, and empirically confirm that variance-heterogeneity based GWA methods are a valuable tool to detect novel associations of biological importance in natural populations.  相似文献   

3.
Population-based methods for the genetic mapping of adaptive traits and the analysis of natural selection require that the population structure and demographic history of a species are taken into account. We characterized geographic patterns of genetic variation in the model plant Arabidopsis thaliana by genotyping 115 genome-wide single nucleotide polymorphism (SNP) markers in 351 accessions from the whole species range using a matrix-assisted laser desorption/ionization time-of-flight assay, and by sequencing of nine unlinked short genomic regions in a subset of 64 accessions. The observed frequency distribution of SNPs is not consistent with a constant-size neutral model of sequence polymorphism due to an excess of rare polymorphisms. There is evidence for a significant population structure as indicated by differences in genetic diversity between geographic regions. Accessions from Central Asia have a low level of polymorphism and an increased level of genome-wide linkage disequilibrium (LD) relative to accessions from the Iberian Peninsula and Central Europe. Cluster analysis with the structure program grouped Eurasian accessions into K=6 clusters. Accessions from the Iberian Peninsula and from Central Asia constitute distinct populations, whereas Central and Eastern European accessions represent admixed populations in which genomes were reshuffled by historical recombination events. These patterns likely result from a rapid postglacial recolonization of Eurasia from glacial refugial populations. Our analyses suggest that mapping populations for association or LD mapping should be chosen from regional rather than a species-wide sample or identified genetically as sets of individuals with similar average genetic distances. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
The pattern of polymorphism in Arabidopsis thaliana   总被引:1,自引:0,他引:1       下载免费PDF全文
We resequenced 876 short fragments in a sample of 96 individuals of Arabidopsis thaliana that included stock center accessions as well as a hierarchical sample from natural populations. Although A. thaliana is a selfing weed, the pattern of polymorphism in general agrees with what is expected for a widely distributed, sexually reproducing species. Linkage disequilibrium decays rapidly, within 50 kb. Variation is shared worldwide, although population structure and isolation by distance are evident. The data fail to fit standard neutral models in several ways. There is a genome-wide excess of rare alleles, at least partially due to selection. There is too much variation between genomic regions in the level of polymorphism. The local level of polymorphism is negatively correlated with gene density and positively correlated with segmental duplications. Because the data do not fit theoretical null distributions, attempts to infer natural selection from polymorphism data will require genome-wide surveys of polymorphism in order to identify anomalous regions. Despite this, our data support the utility of A. thaliana as a model for evolutionary functional genomics.  相似文献   

5.
Polyploid species possess more than two sets of chromosomes and may show high gene redundancy, hybrid vigor, and masking of deleterious alleles compared to their parent species. Following this, it is hypothesized that this makes them better at adapting to novel environments than their parent species, possibly due to phenotypic plasticity. The allopolyploid Arabidopsis suecica and its parent species A. arenosa and A. thaliana were chosen as a model system to investigate relationships between phenotypic plasticity, fitness, and genetic variation. Particularly, we test if A. suecica is more plastic, show higher genetic diversity, and/or have higher fitness than its parent species. Wild Norwegian populations of each species were analyzed for phenotypic responses to differences in availability of nutrient, water, and light, while genetic diversity was assessed through analysis of AFLP markers. Arabidopsis arenosa showed a higher level of phenotypic plasticity and higher levels of genetic diversity than the two other species, probably related to its outbreeding reproduction strategy. Furthermore, a general positive relationship between genetic diversity and phenotypic plasticity was found. Low genetic diversity was found in the inbreeding A. thaliana. Geographic spacing of populations might explain the clear genetic structure in A. arenosa, while the lack of structure in A. suecica could be due to coherent populations. Fitness measured as allocation of resources to reproduction, pointed toward A. arenosa having lower fitness under poor environmental conditions. Arabidopsis suecica, on the other hand, showed tendencies toward keeping up fitness under different environmental conditions.  相似文献   

6.
In human genetics a detailed knowledge of linkage disequilibrium (LD) is considered a prerequisite for effective population-based, high-resolution gene mapping and cloning. Similar opportunities exist for plants; however, differences in breeding system and population history need to be considered. Here we report a detailed study of localized LD in different populations of an inbreeding crop species. We measured LD between and within four gene loci within the region surrounding the hardness locus in three different gene pools of barley (Hordeum vulgare). We demonstrate that LD extends to at least 212 kb in elite barley cultivars but is rapidly eroded in related inbreeding ancestral populations. Our results indicate that haplotype-based sequence analysis in multiple populations will provide new opportunities to adjust the resolution of association studies in inbreeding crop species.  相似文献   

7.
During the past 40 years, more than 400 Sudden Unexplained Deaths (SUDs) have occurred in Yunnan, southwestern China. Epidemiological and toxicological analyses suggested that a newly discovered mushroom called Trogia venenata was the leading culprit for SUDs. At present, relatively little is known about the genetics and natural history of this mushroom. In this study, we analyzed the sequence variation at four DNA fragments among 232 fruiting bodies of T. venenata collected from seven locations. Our ITS sequence analyses confirmed that all the isolates belonged to the same species. The widespread presence of sequence heterozygosity within many strains at each of three protein-coding genes suggested that the fruiting bodies were diploid, dikaryotic or heterokaryotic. Within individual geographic populations, we found significant deviations of genotype frequencies from Hardy-Weinberg expectations, with the overall observed heterozygosity lower than that expected under random mating, consistent with prevalent inbreeding within local populations. The geographic populations were overall genetically differentiated. Interestingly, while a positive correlation was found between population genetic distance and geographic distance, there was little correlation between genetic distance and barium concentration difference for the geographic populations. Our results suggest frequent inbreeding, geographic structuring, and limited gene flow among geographic populations of T. venenata from southwestern China.  相似文献   

8.
Information on demographic, genetic, and environmental parameters of wild and captive animal populations has proven to be crucial to conservation programs and strategies. Genetic approaches in conservation programs of Brazilian snakes remain scarce despite their importance for critically endangered species, such as Bothrops insularis, the golden lancehead, which is endemic to Ilha da Queimada Grande, coast of São Paulo State, Brazil. This study aims to (a) characterize the genetic diversity of ex situ and in situ populations of B. insularis using heterologous microsatellites; (b) investigate genetic structure among and within these populations; and (c) provide data for the conservation program of the species. Twelve informative microsatellites obtained from three species of the B. neuwiedi group were used to access genetic diversity indexes of ex situ and in situ populations. Low‐to‐medium genetic diversity parameters were found. Both populations showed low—albeit significant—values of system of mating inbreeding coefficient, whereas only the in situ population showed a significant value of pedigree inbreeding coefficient. Significant values of genetic differentiation indexes suggest a small differentiation between the two populations. Discriminant analysis of principal components (DAPC) recovered five clusters. No geographic relationship was found in the island, suggesting the occurrence of gene flow. Also, our data allowed the establishment of six preferential breeding couples, aiming to minimize inbreeding and elucidate uncertain parental relationships in the captive population. In a conservation perspective, continuous monitoring of both populations is demanded: it involves the incorporation of new individuals from the island into the captive population to avoid inbreeding and to achieve the recommended allelic similarity between the two populations. At last, we recommend that the genetic data support researches as a base to maintain a viable and healthy captive population, highly genetically similar to the in situ one, which is crucial for considering a reintroduction process into the island.  相似文献   

9.
Assessing the extent of linkage disequilibrium (LD) in natural populations of a nonmodel species has been difficult due to the lack of available genomic markers. However, with advances in genotyping and genome sequencing, genomic characterization of natural populations has become feasible. Using sequence data and SNP genotypes, we measured LD and modeled the demographic history of wild canid populations and domestic dog breeds. In 11 gray wolf populations and one coyote population, we find that the extent of LD as measured by the distance at which r2 = 0.2 extends <10 kb in outbred populations to >1.7 Mb in populations that have experienced significant founder events and bottlenecks. This large range in the extent of LD parallels that observed in 18 dog breeds where the r2 value varies from ~20 kb to >5 Mb. Furthermore, in modeling demographic history under a composite-likelihood framework, we find that two of five wild canid populations exhibit evidence of a historical population contraction. Five domestic dog breeds display evidence for a minor population contraction during domestication and a more severe contraction during breed formation. Only a 5% reduction in nucleotide diversity was observed as a result of domestication, whereas the loss of nucleotide diversity with breed formation averaged 35%.  相似文献   

10.

Background

The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use.

Results

From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1–100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure.

Conclusion

This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1–100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in Bos taurus breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.  相似文献   

11.
Li MH  Merilä J 《Molecular ecology》2011,20(14):2916-2928
Information about the levels of linkage disequilibrium (LD) in wild animal populations is still limited, and this is true particularly with respect to possible interpopulation variation in the levels of LD. We compared the levels and extent of LD at the genome‐wide scale in three Siberian jay (Perisoreus infaustus) populations, two of which (Kuusamo and Ylläs) represented outbred populations within the main distribution area of the species, whereas the third (Suupohja) was a semi‐isolated, partially inbred population at the margin of the species’ distribution area. Although extensive long‐range LD (>20 cM) was observed in all three populations, LD generally decayed to background levels at a distance of 1–5 cM or c. 200–600 kb. The degree and extent of LD differed markedly between populations but aligned closely with both observed levels of within‐population genetic variation and expectations based on population history. The levels of LD were highest in the most inbred population with strong population substructure (Suupohja), compared with the two outbred populations. Furthermore, the decay of LD with increasing distance was slower in Suupohja, compared with the other two populations. By demonstrating that levels of LD can vary greatly over relatively short geographical distances within a species, these results suggest that prospects for association mapping differ from population to population. In this example, the prospects are best in the Suupohja population, given that minimized marker genotyping and a minimum marker spacing of 1–5 cM (c. 200–600 kb) would be sufficient for a whole genome scan for detecting QTL.  相似文献   

12.
Phenotypic variation in ecologically important traits may vary at large and small geographic scales, and may be shaped by natural selection. Here our explicit aim is to evaluate phenotypic differentiation among local populations and examine its relationship with ecological edaphic and climatic features that could lead to local adaptation. We characterized six populations of the model plant Arabidopsis thaliana over 3 years in the field in its native range. At each site, we measured edaphic conditions and aboveground and belowground phenotypes. In addition, we grew plants from the six characterized populations in a common greenhouse along with an additional fifteen populations from the Iberian Peninsula to examine evolutionary and ecological differentiation among populations, and relationships between geographic and ecological distance to phenotypic differences among populations. Significant differences in aboveground and belowground traits, population density, and micro- and macro-nutrient soil concentrations were found among the field populations. In particular, root architectural traits differed significantly among field populations. Complex patterns of ecological differences among population and plant phenotypes emerged when examining edaphic conditions in the Extremadura region, and geographic and climate variables at a broader scale of the Iberian Peninsula. We report levels of phenotypic variation at the local scale comparable to those found at broad geographic scales and report that local edaphic conditions contribute to population-level phenotypic variation in root and shoot traits. To our knowledge, these are the first reports of among population root architectural variation from natural field populations for this model organism. We demonstrate how ecological features, such as soil nutrients, can be associated with the phenotypic variation of A. thaliana measured in natural populations and may contribute to adaptive differentiation at a local scale.  相似文献   

13.
Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3 , a major update of the spatial ancestry estimation program TESS . By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana.  相似文献   

14.
Genetic diversity is affected by breeding systems, life history traits and the distribution of species. Generally, inbred species with restricted geographic distribution have lower genetic variation compared to common outbreeding plant species. Rhinanthus osiliensis is a narrow endemic growing in calcareous spring fens on the island Saaremaa, Estonia. Presumably the closest congener of R. osiliensis is R. rumelicus, which is widely distributed in Eastern and Central Europe and the Balkan Peninsula. Isozymes were used to describe the mating system, levels of genetic variation and differentiation between the populations of R. osiliensis and R. rumelicus. Genetic diversity was found to be higher in widespread R. rumelicus compared to the endemic R. osiliensis. A significantly higher inbreeding coefficient with a low germination rate indicated substantial autogamy in R. osiliensis, whereas R. rumelicus displayed a mixed mating mode with a moderate inbreeding coefficient and a high germination rate. The low genetic differentiation between R. osiliensis and R. rumelicus confirmed their close affinity and the short evolutionary period of both taxa after the postglacial colonization. Considering the restricted geographic range and inbreeding in populations of R. osiliensis, this species may face a loss of genetic variation in the future.  相似文献   

15.
16.
To understand the demographic history of Arabidopsis thaliana within its native geographical range, we have studied its genetic structure in the Iberian Peninsula region. We have analyzed the amount and spatial distribution of A. thaliana genetic variation by genotyping 268 individuals sampled in 100 natural populations from the Iberian Peninsula. Analyses of 175 individuals from 7 of these populations, with 20 chloroplast and nuclear microsatellite loci and 109 common single nucleotide polymorphisms, show significant population differentiation and isolation by distance. In addition, analyses of one genotype from 100 populations detected significant isolation by distance over the entire Iberian Peninsula, as well as among six Iberian subregions. Analyses of these 100 genotypes with different model-based clustering algorithms inferred four genetic clusters, which show a clear-cut geographical differentiation pattern. On the other hand, clustering analysis of a worldwide sample showed a west–east Eurasian longitudinal spatial gradient of the commonest Iberian genetic cluster. These results indicate that A. thaliana genetic variation displays significant regional structure and consistently support the hypothesis that Iberia has been a glacial refugium for A. thaliana. Furthermore, the Iberian geographical structure indicates a complex regional population dynamics, suggesting that this region contained multiple Pleistocene refugia with a different contribution to the postglacial colonization of Europe.  相似文献   

17.
Narrow endemics are at risk from climate change because of their restricted habitat preferences, lower colonization ability and dispersal distances. Landscape genetics combines new tools and analyses that allow us to test how both past and present landscape features have facilitated or hindered previous range expansion and local migration patterns, and thereby identifying potential limitations to future range shifts. We have compared current and historic habitat corridors in Cirsium pitcheri, an endemic of the linear dune ecosystem of the Great Lakes, to determine the relative contributions of contemporary migration and post-glacial range expansion on genetic structure. We used seven microsatellite loci to characterize the genetic structure for 24 populations of Cirsium pitcheri, spanning the center to periphery of the range. We tested genetic distance against different measures of geographic distance and landscape permeability, based on contemporary and historic landscape features. We found moderate genetic structure (Fst=0.14), and a north–south pattern to the distribution of genetic diversity and inbreeding, with northern populations having the highest diversity and lowest levels of inbreeding. High allelic diversity, small average pairwise distances and mixed genetic clusters identified in Structure suggest that populations in the center of the range represent the point of entry to the Lake Michigan and a refugium of diversity for this species. A strong association between genetic distances and lake-level changes suggests that historic lake fluctuations best explain the broad geographic patterns, and sandy habitat best explains local patterns of movement.  相似文献   

18.
Several factors such as geographical barriers, demographic history, biological and ecological traits may contribute to delineate the evolutionary history of a species. The gray mullet, Mugil cephalus, represents an interesting case of a marine species with a coastal ecology and a cosmopolitan distribution. In this study, partial cytochrome b sequences were resolved for 177 M. cephalus specimens sampled from 14 different geographic sites, in order to investigate the genetic divergence and the phylogeographic relationship among populations at a global scale. Demographic parameters were also assessed. Analysis of partial cyt b sequences showed high levels of differentiation among populations from distant geographic areas as most populations harbored private alleles and showed reciprocal monophyly. Both phylogenetic trees and haplotype network indicate the East Australian haplotypes as the closest to the ancestor sequences, which leads to the hypothesis of an Indo-West Pacific center of origin for M. cephalus. The analyses of the molecular variance showed that the genetic variation in M. cephalus is mainly harbored among populations rather than within populations. The high variability indices (h, π) calculated on M. cephalus individuals pooled together and the very low variability indices detected at some geographic sampling sites suggest that gray mullet populations have undergone a long-term reproductive isolation characterized by events of population abundance reductions which may have favored genetic differentiation among populations.  相似文献   

19.
The Pattern of Polymorphism in Arabidopsis thaliana   总被引:1,自引:2,他引:1       下载免费PDF全文
We resequenced 876 short fragments in a sample of 96 individuals of Arabidopsis thaliana that included stock center accessions as well as a hierarchical sample from natural populations. Although A. thaliana is a selfing weed, the pattern of polymorphism in general agrees with what is expected for a widely distributed, sexually reproducing species. Linkage disequilibrium decays rapidly, within 50 kb. Variation is shared worldwide, although population structure and isolation by distance are evident. The data fail to fit standard neutral models in several ways. There is a genome-wide excess of rare alleles, at least partially due to selection. There is too much variation between genomic regions in the level of polymorphism. The local level of polymorphism is negatively correlated with gene density and positively correlated with segmental duplications. Because the data do not fit theoretical null distributions, attempts to infer natural selection from polymorphism data will require genome-wide surveys of polymorphism in order to identify anomalous regions. Despite this, our data support the utility of A. thaliana as a model for evolutionary functional genomics.  相似文献   

20.
Buddleja crispa Benth. is one of the most morphologically variable species in genus Buddleja, and it is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. This study used AFLPs as a tool to examine the genetic variation among and within 25 populations of B. crispa. Analysis of population genetics of the species aimed to clarify morphological variation, current distribution patterns, strong adaptability to habitats, and the effects of geological factors in the HHM region. The genetic structure results, based on PCoA and NJ cluster analyses, revealed that the populations of B. crispa were divided into two genetic groups. Furthermore, the peripheral populations had lower genetic diversity than the populations in the center of the distribution areas (Three Parallel Rivers). We conclude that the gene flow (predominantly seed and pollen flow) and the population differentiation of B. crispa might be more affected by the barriers formed by rivers and mountains than by geographic distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号