首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young leaves of tropical forest trees experience far higher herbivory pressure than mature leaves of the same species. Selection on young leaves has led to diverse forms of defense chemical expression. Though most allelochemicals are secondary metabolites, allelochemic function for a primary metabolite remains a possibility. We recently observed this phenomenon in the young leaves of Inga umbellifera, which accumulate the protein amino acid l-tyrosine to very high levels. We isolated l-tyrosine from young leaves of trees in Panama and characterized it using spectroscopic and chemical means. We chromatographically quantified leaf l-tyrosine levels across a range of developmental stages, showing that it was present in the youngest leaves and that its concentration increased throughout the period of expansion, reaching an average maximum of ca 10% of leaf dry mass in late-stage young leaves. This chemical phenotype was seen to be highly leaf-age specific: Free tyrosine was only present in mature leaves at very low levels. In bioassays with larvae of the noctuid moth H. virescens, l-tyrosine proved to be a potent growth inhibitor when added to artificial diet at 10% of dry mass. This suggests that a rarely observed defense strategy occurs in young I. umbellifera leaves, a hyper-produced primary metabolite functioning as an allelochemical.  相似文献   

2.
The tissue-specific and development-dependent accumulation of secondary products in roots and mycorrhizas of larch (Larix decidua Mill.; Pinaceae) was studied using high-performance liquid chromatography and histochemical methods. The compounds identified were soluble catechin, epicatechin, quercetin 3-O-[alpha]-rhamnoside, cyanidin- and peonidin 3-O-[beta]-glucoside, 4-O-[beta]-hydroxybenzoyl-O-[beta]-glucose, 4-hydroxybenzoate 4-O-[beta]-glucoside, maltol 3-O-[beta]-glucoside, and the wall-bound 4-hydroxybenzaldehyde, vanillin, and ferulate. In addition, we partially identified a tetrahydroxystilbene monoglycoside, a quercetin glycoside, and eight oligomeric proanthocyanidins. Comparison between the compounds accumulating in the apical tissue of fine roots, long roots, and in vitro grown mycorrhizas (L. decidua-Suillus tridentinus) showed elevated levels of the major compounds catechin and epicatechin as well as the minor compound 4-hydroxybenzoate 4-O-[beta]-glucoside specifically in the root apex of young mycorrhizas. The amounts of wall-bound 4-hydroxybenzaldehyde and vanillin were increased in all of the mycorrhizal sections examined. During the early stages of mycorrhization the concentrations of these compounds increased rapidly, perhaps induced by the mycorrhizal fungus. In addition, studies of L. decidua-Boletinus cavipes mycorrhizas from a natural stand showed that the central part of the subapical cortex tissue and the endodermis both accumulate massive concentrations of catechin, epicatechin, and wall-bound ferulate compared with the outer part of the cortex, where the Hartig net is being formed.  相似文献   

3.
Ban JY  Jeon SY  Bae K  Song KS  Seong YH 《Life sciences》2006,79(24):2251-2259
We previously reported that the Smilacis chinae rhizome inhibits amyloid beta protein (25-35) (Abeta (25-35))-induced neurotoxicity in cultured rat cortical neurons. Here, we isolated catechin and epicatechin from S. chinae rhizome and also studied their neuroprotective effects on Abeta (25-35)-induced neurotoxicity in cultured rat cortical neurons. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced neuronal cell death at a concentration of 10 microM, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Catechin and epicatechin inhibited 10 microM Abeta (25-35)-induced elevation of cytosolic calcium concentration ([Ca2+]c), which was measured by a fluorescent dye, Fluo-4 AM. Catechin and epicatechin also inhibited glutamate release into medium induced by 10 microM Abeta (25-35), which was measured by HPLC, generation of reactive oxygen species (ROS) and activation of caspase-3. These results suggest that catechin and epicatechin prevent Abeta (25-35)-induced neuronal cell damage by interfering with the increase of [Ca2+]c, and then by inhibiting glutamate release, generation of ROS and caspase-3 activity. Furthermore, these effects of catechin and epicatechin may be associated with the neuroprotective effect of the S. chinae rhizome.  相似文献   

4.
《Phytochemistry》1986,26(1):175-179
Chemical analysis of ground aerial parts of Ceratiola ericoides yielded the two known dihydrochalcones angoletin and 2′,6′-dihydroxy-4-methoxy-3′,5′-dimethyldihydrochalcone, as well as 2′,4′-dihydroxychalcone. Furthermore, the known flavanones 7-hydroxyflavanone, 8-methylpinocembrin and 6,8-dimethylpinocembrin were isolated. Methanol extracts of ground leaves provided catechin, epicatechin and epicatechin-(4β → 8; 2β → 0 → 7)-epicatechin. From water washes of freshly harvested leaves a novel dihydrochalcone, ceratiolin, was isolated. The structures were inferred from NMR, mass spectral and chemical data, and the molecular structure of 6,8-dimethylpinocembrin was determined by single crystal X-ray analysis.  相似文献   

5.
Two lines of the red and pale yellow cell suspension cultures, prepared fromPrunus x yedoensis Matsum. callus induced by Murashige and Skoog's (1962) basal medium supplemented with 2, 4-dichlorophenoxyacetic acid (2, 4-D, 1.0 mg/l), kinetin (0.1 mg/l) and sucrose (30 g/l), were maintained on Schenk and Hildebrandt medium as modified by Mitchell and Gildow (1975). The red cell suspension culture produced cyanidin 3-monoglucoside, 5, 4′-dihydroxy-7-methoxyisoflavone 4′-glucoside (prunetrin), isoquercitrin, catechin, epicatechin, and procyanidin B-1, B-2, B-3 and B-4, while the pale yellow cells produced only a small amount of catechin and epicatechin as main flavonoids. These flavonoid compounds found in the red cell culture were present also in maturePrunus leaves. Maximum growth and maximum amount of total phenol and proanthocyanidin (procyanidins) were obtained with 0.3 mg/l of both 2,4-D and kinetin. Maximum concentration of anthocyanin was also obtained with 0.3 mg/l 2, 4-D regardless of kinetin concentration. Accumulation of proanthocyanidin was markedly stimulated by low concentrations of phosphate, which reduced growth by about half, and also by high concentrations of inorganic nitrogen. Production of both anthocyanin and proanthocyanidin was reduced by lowered nitrogen levels. Cell growth and production of all phenolics were inhibited when ammonium ion replaced nitrate in the medium.  相似文献   

6.
Two new compounds, 5-methyl-2-(2-methylbutanoyl)phloroglucinol 1-O-(6-O-β-D-apiofuranosyl)-β-D-glucopyranoside (1) and trans-2,3-dihydrokaempferol 3-O-(4-O-sulfo)-α-L-arabinopyranoside (2), together with 14 known flavonoids, trans-dihydrokaempferol 3-O-α-L-arabinopyranoside (3), trans-taxifolin 3-O-α-L-arabinofuranoside (4), quercetin 3-O-α-L-rhamnopyranoside (5), quercetin 3'-O-α-L-arabinofuranoside (6), catechin 3-O-α-L-rhamnopyranoside (7), trans-taxifolin 3-O-α-L-arabinopyranoside (8), cis-dihydrokaempferol 3-O-α-L-arabinopyranoside (9), catechin (10), myricetin 3-O-α-L-rhamnopyranoside (11), quercetin 3-O-α-L-arabinopyranoside (12), quercetin 3-O-α-L-arabinofuranoside (13), quercetin 3-O-(3″-galloyl)-α-L-rhamnopyranoside (14), quercetin 3-O-(2″-galloyl)-α-L-rhamnopyranoside (15), and epicatechin 3-O-gallate (16), were isolated from the leaves of Ruprechtia polystachya Griseb. (Polygonaceae). Their structures were established on the basis of extensive 1D- and 2D-NMR experiments as well as MS analyses. All compounds, except 1, showed inhibition of the enzyme glucose-6-phosphatase in intact microsomes.  相似文献   

7.
An antitumor promoter from Moringa oleifera Lam   总被引:4,自引:0,他引:4  
In the course of studies on the isolation of bioactive compounds from Philippine plants, the seeds of Moringa oleifera Lam. were examined and from the ethanol extract were isolated the new O-ethyl-4-(alpha-L-rhamnosyloxy)benzyl carbamate (1) together with seven known compounds, 4(alpha-L-rhamnosyloxy)-benzyl isothiocyanate (2), niazimicin (3), niazirin (4), beta-sitosterol (5), glycerol-1-(9-octadecanoate) (6), 3-O-(6'-O-oleoyl-beta-D-glucopyranosyl)-beta-sitosterol (7), and beta-sitosterol-3-O-beta-D-glucopyranoside (8). Four of the isolates (2, 3, 7, and 8), which were obtained in relatively good yields, were tested for their potential antitumor promoting activity using an in vitro assay which tested their inhibitory effects on Epstein-Barr virus-early antigen (EBV-EA) activation in Raji cells induced by the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA). All the tested compounds showed inhibitory activity against EBV-EA activation, with compounds 2, 3 and 8 having shown very significant activities. Based on the in vitro results, niazimicin (3) was further subjected to in vivo test and found to have potent antitumor promoting activity in the two-stage carcinogenesis in mouse skin using 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and TPA as tumor promoter. From these results, niazimicin (3) is proposed to be a potent chemo-preventive agent in chemical carcinogenesis.  相似文献   

8.
The phenols of Paul's Scarlet rose stems and stem-derived cell cultures have been analyzed using C18-reversed-phase high performance liquid chromatography.

Rose stems were found to contain gallic acid, (+)catechin, (−)epicatechin, the dimers (−)epicatechin-(+)catechin and (+)catechin-(+)catechin, a polymeric procyanidin, ferulic acid, and several gallotannins. In contrast, a cell suspension of Paul's Scarlet rose which has been maintained in culture for over 25 years contained only low levels of gallic acid and (−)epicatechin-(+)catechin. The phenol content of a second rose cell line which was started from the same initial isolate in 1957, but which was maintained in a laboratory other than our own was quantitatively and qualitatively similar to the cell line kept in our laboratory for the last 20 years. A third cell line which we started 6 months ago contained a wide variety of phenols, most of which were in common with those of rose stems.

Selective subculturing of smaller cell clumps of our oldest cell line failed to enhance either the quantities or the diversity of phenols which accumulated in these cultured cells. Possible reasons for the failure of selective subculturing to enhance phenol levels in this long-established cell line are discussed.

  相似文献   

9.
Grape seed polyphenols have been reported to exhibit a broad spectrum of biological properties. In this study, eleven phenolic phytochemicals from grape seeds were purified by gel chromatography and high performance liquid chromatography (HPLC). The antioxidant activities of five representative compounds with different structure type were assessed by the free radical-scavenging tests and the effects of the more potent phytochemicals on oxidative damage to DNA in mice spleen cells were investigated. Procyanidin B4, catechin, epicatechin and gallic acid reduced ferricyanide ion and scavenged the stable free radical, alpha, alpha-diphenyl-beta-picrylhydrazyl (DPPH) much more effectively than the known antioxidant vitamin ascorbic acid, while epicatechin lactone A, an oxidative derivative of epicatechin, did not reduce ferricyanide ion appreciably at concentrations used and was only about half as effective on free radical-scavenging as epicatechin. Mice spleen cells, when pre-incubated with relatively low concentration of procyanidin B4, catechin or gallic acid, were less susceptible to DNA damage induced by hydrogen peroxide (H2O2), as evaluated by the comet assay. In contrast, noticeable DNA damage was induced in mice spleen cells by incubating with higher concentration (150 microM) of catechin. Collectively, these data suggest that procyanidin B4, catechin, gallic acid were good antioxidants, at low concentration they could prevent oxidative damage to cellular DNA. But at higher concentration, these compounds may induce cellular DNA damage, taking catechin for example, which explained the irregularity of dose-effect relationship.  相似文献   

10.
Azuma T  Tanaka Y  Kikuzaki H 《Phytochemistry》2008,69(15):2743-2748
Three phenolic glycosides were isolated together with two known flavonol glycosides from the H2O-soluble fraction of rhizomes of Kaempferia parviflora. Their structures were determined to be rel-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranoside] (1), its rel-5aS,10bR isomer (2), and (2R,3S,4S)-3-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-d-glucopyranosyl]-3'-O-methyl-ent-epicatechin-(2alpha-->O-->3,4alpha-->4)-(5aS,10bS)-5a,10b-dihydro-1,3,5a,9-tetrahydroxy-8-methoxy-6H-benz[b]indeno[1,2-d]furan-6-one 5a-O-[alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranoside] (3). The structures were elucidated on the basis of analyses of chemical and spectroscopic evidence.  相似文献   

11.
The flavan-3-ols (-)-epicatechin (epicatechin) and (+)-catechin (catechin) and their related oligomers (procyanidins) isolated from cocoa were assayed for their capacity to inhibit the UVC-mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo(8)dG) in calf thymus DNA. The above-mentioned compounds inhibited oxo(8)dG production in a concentration- and time-dependent manner. After 30 min of irradiation (30 kJ/m(2)), 0.1, 1.0, 10, and 100 microM epicatechin inhibited oxo(8)dG formation by 20, 36, 64, and 74%, respectively. For the same dose of UVC, 0.1, 1.0, 10, and 100 microM catechin inhibited oxo(8)dG formation by 1, 23, 50, and 70%, respectively. Epicatechin was more efficient than catechin with respect to inhibiting oxo(8)dG formation (IC(50) 1.7 +/- 0.7 vs 4.0 +/- 0.7 microM). Monomer, tetramer, and hexamer fractions were equally effective in inhibiting oxo(8)dG formation when assayed at 10 microM monomer equivalent concentration. At similar concentrations (1-50 microM), the inhibition of the UVC-mediated oxo(8)dG formation by flavan-3-ols and procyanidins was in the range of that of alpha-tocopherol, Trolox, ascorbate, and glutathione. These results support the concept that flavan-3-ols and their related procyanidins can protect DNA from oxidation at concentrations that can be physiologically relevant. Both epimerism and degree of oligomerization are important determinants of the antioxidant activity of flavan-3-ols and procyanidins.  相似文献   

12.
Fossen T  Rayyan S  Andersen ØM 《Phytochemistry》2004,65(10):1421-1428
Flavanol-anthocyanin complexes were isolated by successive use of Amberlite XAD-7 chromatography, Sephadex LH-20 gel filtration and preparative HPLC from acidified, methanolic extract of strawberries (Fragaria ananassa Dutch.). These purple minor pigments were characterized by UV-Vis spectroscopy, 1D and 2D NMR techniques, and electrospray mass spectrometry to be catechin(4alpha --> 8)pelargonidin 3-O-beta-glucopyranoside (1), epicatechin(4alpha --> 8)pelargonidin 3-O-beta-glucopyranoside (2), afzelechin(4alpha --> 8)pelargonidin 3-O-beta-glucopyranoside (3) and epiafzelechin(4alpha --> 8)pelargonidin 3-O-beta-glucopyranoside (4). The stereochemistry at the 3- and 4-positions of the flavan-3-ol units was based on assumption of R-configuration at C-2. Each of the four pigments occurred in the NMR solvent as a pair of rotamers. Proved by cross-peaks in the 1H-1H NOESY NMR spectra of 1, 2 and 4, the two conformations within each rotameric pair were in equilibrium with each other. Even though 1 and 2 are based on a different aglycone, their structures may be similar to tentatively identified pigments, which have been assumed to contribute to the colour of red wines.  相似文献   

13.
The polyphenolic dimers, epicatechin-4beta-8-catechin (B1), epicatechin-4beta-8-epicatechin (B2), catechin-4beta-8-catechin (B3), catechin-4beta-8-epicatechin (B4), and the gallate ester epicatechin-4beta-8-epicatechin gallate (B'2G) were isolated from grape seeds, and theaflavins and theafulvins from black tea brews. The ability of these naturally-occurring polyphenols to afford protection against the genotoxicity of the heterocyclic amine 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) was compared with that of the monomeric tea flavanols, (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG). Genotoxic activity was evaluated in human peripheral lymphocytes using the Comet assay. At the concentration range of 1-100 microM, neither the monomeric nor the dimeric flavanols prevented the lymphocyte DNA damage induced by Trp-P-2. In contrast, both of the black tea polyphenols, theafulvins and theaflavins, at a dose range of 0.1-0.5 mg/ml, prevented, in a concentration-dependent manner, the DNA damage elicited by Trp-P-2. Finally, neither the monomeric and dimeric polyphenols (100 microM) nor the theafulvins and theaflavins (0.5mg/ml) caused any DNA damage in the human lymphocytes. These studies illustrate that black tea theafulvins and theaflavins, if absorbed intact, may contribute to the anticarcinogenic potential associated with black tea intake.  相似文献   

14.
The antioxidant polyphenols in cacao liquor, a major ingredient of chocolate and cocoa, have been characterized as flavan-3-ols and proanthocyanidin oligomers. In this study, various cacao products were analyzed by normal-phase HPLC, and the profiles and quantities of the polyphenols present, grouped by molecular size (monomers~oligomers), were compared. Individual cacao polyphenols, flavan-3-ols (catechin and epicatechin), and dimeric (procyanidin B2), trimeric (procyanidin C1), and tetrameric (cinnamtannin A2) proanthocyanidins, and galactopyranosyl-ent-(-)-epicatechin (2α→7, 4α→8)-(-)-epicatechin (Gal-EC-EC), were analyzed by reversed-phase HPLC and/or HPLC/MS. The profile of monomers (catechins) and proanthocyanidin in dark chocolate was similar to that of cacao liquor, while the ratio of flavan-3-ols to the total amount of monomeric and oligomeric polyphenols in the case of pure cocoa powder was higher than that in the case of cacao liquor or chocolate.  相似文献   

15.
Anthocyanidins were proposed to derive from (+)-naringenin via (2R,3R)-dihydroflavonol(s) and (2R,3S,4S)-leucocyanidin(s) which are eventually oxidized by anthocyanidin synthase (ANS). Recently, the role of ANS has been put into question, because the recombinant enzyme from Arabidopsis exhibited primarily flavonol synthase (FLS) activity with negligible ANS activity. This and other studies led to the proposal that ANS as well as FLS may select for dihydroflavonoid substrates carrying a "beta-face" C-3 hydroxyl group and initially form the 3-geminal diol by "alpha-face" hydroxylation. Assays with recombinant ANS from Gerbera hybrida fully supported the proposal and were extended to catechin and epicatechin isomers as potential substrates to delineate the enzyme specificity. Gerbera ANS converted (+)-catechin to two major and one minor product, whereas ent(-)-catechin (2S,3R-trans-catechin), (-)-epicatechin, ent(+)-epicatechin (2S,3S-cis-epicatechin) and (-)-gallocatechin were not accepted. The K(m) value for (+)-catechin was determined at 175 microM, and the products were identified by LC-MS(n) and NMR as the 4,4-dimer of oxidized (+)-catechin (93%), cyanidin (7%) and quercetin (trace). When these incubations were repeated in the presence of UDP-glucose:flavonoid 3-O-glucosyltransferase from Fragariaxananassa (FaGT1), the product ratio shifted to cyanidin 3-O-glucoside (60%), cyanidin (14%) and dimeric oxidized (+)-catechin (26%) at an overall equivalent rate of conversion. The data appear to identify (+)-catechin as another substrate of ANS in vivo and shed new light on the mechanism of its catalysis. Moreover, the enzymatic dimerization of catechin monomers is reported for the first time suggesting a role for ANS beyond the oxidation of leucocyanidins.  相似文献   

16.
17.
A range of catechins and oligomeric procyanidins was purified by high performance liquid chromatography (HPLC) from grape seed, apple skin, lentil and almond flesh. Catechins, galloylated epicatechin, glycosylated catechin, procyanidin dimers, galloylated dimers, trimer, and tetramer species were all identified, purified and quantified by HPLC, LC-MS and NMR. The antioxidant properties of these compounds were assessed using two methods: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes; (b) scavenging of the radical cation of 2,2′-azinobis(3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue Trolox C (expressed as Trolox C equivalent antioxidant capacity, TEAC). Antioxidant activity in the lipid phase decreased with polymerisation in contrast with antioxidant action in the aqueous phase which increased from monomer to trimer and then decreased from trimer to tetramer. Galloylation of catechin and dimeric procyanidins decreased lipid phase and increased aqueous phase antioxidant activity. Glycosylation of catechin demonstrated decreased activity in both phases.  相似文献   

18.
A range of catechins and oligomeric procyanidins was purified by high performance liquid chromatography (HPLC) from grape seed, apple skin, lentil and almond flesh. Catechins, galloylated epicatechin, glycosylated catechin, procyanidin dimers, galloylated dimers, trimer, and tetramer species were all identified, purified and quantified by HPLC, LC-MS and NMR. The antioxidant properties of these compounds were assessed using two methods: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes; (b) scavenging of the radical cation of 2,2'-azinobis(3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue Trolox C (expressed as Trolox C equivalent antioxidant capacity, TEAC). Antioxidant activity in the lipid phase decreased with polymerisation in contrast with antioxidant action in the aqueous phase which increased from monomer to trimer and then decreased from trimer to tetramer. Galloylation of catechin and dimeric procyanidins decreased lipid phase and increased aqueous phase antioxidant activity. Glycosylation of catechin demonstrated decreased activity in both phases.  相似文献   

19.
An in vitro model fermentation system, containing purified catechins and partially purified polyphenol oxidase (EC 1.14.81.1) from green tea shoots, has been used to determine the efrect of catechin mixtures of different concentration and proportions on the formation of theaflavin and thearubigin. Increases in total catechin concentration, 25% above that typical in green tea shoots of Malawi-grown bushes, inhibited polyphenol oxidase activity and, consequently, depressed theaflavin levels. Individual or combined concentrations of epicatechin gallate and epigallocatechin gallate in excess of 110 mM were shown to be responsible for enzyme inhibition, whereas epicatechin and epigallocatechin had no effect. Fermentation of a catechin mixture, containing the four major catechins, epicatechin, epigallocatechin, epigallocatechin gallate and epicatechin gallate, at equal individual concentrations (55 mM), produced, after 3O min, total theaflavin levels 68% higher and thearubigin levels only 25% higher than those from a standard catechin mixture fermented under similar conditions. Continued fermentation of this mixture produced no further theaflavin, but the thearubigin fraction increased significantly, due to subsequent oxidation of the excess of simple catechins. A new catechin mixture was, therefore, calculated to give a similar level of theaflavin to that of the previous mixture without leaving an excess of unoxidized simple catechins. The catechin proportions and concentrations of the latter mixture agree well with those of the green shoots of quality Kenyan teas or similar quality Malawi teas grown during the dry cold season. The results indicate that a high ratio of simple to gallocatechins will facilitate a high theaflavin-thearubigin ratio in black tea.  相似文献   

20.
从梧桐科火绳属桂火绳中提取分离到22个化合物,经结构鉴定为:羽扇豆醇(1),白桦脂酸(2),齐墩果酸(3),丁香脂素(4),(+)-异落叶松树脂醇(5),东莨菪内酯(6),对羟基肉桂酸(7),二十七碳酸单甘油酯(8),2-十八烯酸单甘油酯(9),sitoindosideⅡ(10),儿茶素(11),表儿茶素(12),表儿茶素3-O-β-D-吡喃木糖甙(13),山奈酚3-O-β-D-吡喃葡萄糖甙(14),5,7,4'-三羟基异黄酮(15),4'-O-methylgallocatechin(16),反式-二氢槲皮素-3-O-α-阿拉伯糖甙(17),顺式-二氢槲皮素-3-O-α-阿拉伯糖甙(18),反式-二氢槲皮素-3-O-β-吡喃葡萄糖甙(19),3,5,7,3',5'-五羟基-4'-甲氧基异黄酮(20),山奈酚-3-O-β-D-吡喃葡萄糖(6→1)-α-L-吡喃鼠李糖甙(21),以及槲皮素3-O-β-D-吡喃葡萄糖(6→1)-β-D-吡喃葡萄糖甙(22),这些化学成分首次从该属植物中分离出来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号