首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orthopoxviruses bear in their genomes several genes coding for homologous secreted proteins able to bind tumor necrosis factor. Different species of the genus possess different sets of these tumor necrosis factor-binding proteins. Viriola virus encodes the only one of them named CrmB. Despite sharing high sequence identity, CrmB proteins belonging to distinct orthopoxviral species were shown to significantly differ by their physico-chemical and biological properties. We modeled spatial structures of tumor necrosis factor receptor domains of variola and cowpox virus CrmB proteins bound to either murine, or human or mutated human tumor necrosis factor. In the sequence of last the arginine residue at position 31 is substituted with glutamine that is characteristic for murine tumor necrosis factor. Theoretical analysis of modeled ligand-receptor complexes revealed that the least stable should be the complex of cowpox virus CrmB with human tumor necrosis factor, and that arginine to glutamine substitution at position 31 should significantly stabilize binding of corresponding human tumor necrosis factor mutant to cowpox virus CrmB. Experimental evaluation of recombinant variola and cowpox virus CrmB efficiencies in inhibiting cytotoxic effect of all these tumor necrosis factors have approved our predictions.  相似文献   

2.
Smallpox was eradicated more than 10 years ago, but infection with another Orthopoxvirus, monkeypox virus, can result in a clinical picture resembling smallpox. Human infection with monkeypox virus is extremely rare, not easily transmitted, and confined to the rain forest belt of Africa (Z. Jezek and F. Fenner, p. 81-102, in Human Monkeypox, 1988). Evidence that variola virus, the causative agent of smallpox, might be readily derived from monkeypox virus was presented [S. S. Marennikova and E. M. Shelukhina, Nature (London) 276:291-292, 1978; S. S. Marennikova, E. M. Shelukhina, N. N. Maltseva, and G. R. Matsevich Intervirology 11:333-340, 1979], but this was not confirmed [K. R. Dumbell and L. C. Archard, Nature (London) 286:29-32, 1980] and was subsequently discounted (J. J. Esposito, J. H. Nakano, and J. F. Obijeski, Bull. W.H.O. 63:695-703, 1985). Although enough difference between the genomes of monkeypox and variola viruses to rule out a simple interconversion has been demonstrated [K. R. Dumbell and L. C. Archard, Nature (London) 286:29-32, 1980; J. J. Esposito and J. C. Knight, Virology 143:230-251, 1985; J. J. Esposito, J. H. Nakano, and J. F. Obijeski, Bull. W.H.O. 63:695-703, 1985; M. Mackett and L. C. Archard, J. Gen. Virol. 45:683-701, 1979], the possibility that monkeypox virus was a more remote ancestor of variola virus remained. We have now identified a sequence in monkeypox virus DNA which is a homolog of a 1,065-bp open reading frame in the conserved region of the variola virus genome but which has multiple deletions. This is strong evidence that monkeypox virus is not ancestral to variola virus and strengthens confidence in the long-term success of smallpox eradication.  相似文献   

3.
Genes for TNF-binding proteins (CrmBs) of the variola virus (VARV), monkeypox virus (MPXV) or cowpox virus (CPXV) were isolated by PCR from viral genomes and expressed in a baculovirus system in the Sf21 insect cell line. Properties of the purified recombinant proteins were studied by various physicochemical and immunological methods. Using solid-phase enzyme-linked immunosorbent assay, it was shown that viral proteins inhibited hTNF binding with polyclonal anti-hTNF antibodies, with the efficiency of inhibition decreasing in the series VARV-CrmB > CPXV-CrmB > MPXV-CrmB. Biological activity of the recombinant protein preparations was assessed by their ability to neutralize TNF cytotoxicity on the L929 murine fibroblast cells line. CrmBs were shown to neutralize cytotoxicity of human, mouse, and rabbit TNF in a species-specific manner. It was also shown that the efficiency of VARV-CrmB in inhibiting hTNF cytotoxicity exceeded that of polyclonal anti-hTNF antibodies. Orthopoxviral CrmB proteins can provide a basis for development of new anti-TNF drugs.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 245–254.Original Russian Text Copyright © 2005 by Gileva, Ryazankin, Nepomnyashchikh, Totmenin, Maxutov, Lebedev, Afinogenova, Pustoshilova, Shchelkunov.  相似文献   

4.
An improved method for the synthesis of enantiomerically pure D-cyclopentenyl nucleosides has been accomplished and their antiviral activity against orthopox viruses have been evaluated. The key intermediate, L-cyclopent-2-enone 13 was prepared from D-ribose using a ring closing metathesis reaction in eight steps. Among the synthesized nucleosides, the adenine 2 (Neplanocin A), cytosine 14, and 5-F-cytosine 15 analogues exhibited potent anti-orthopox virus activity, including smallpox virus.  相似文献   

5.
Orthopoxviral genomes bear genes for a series of homologous secreted proteins binding tumor necrosis factor (TNF). Orthopoxvirus species have different sets of these proteins. Variola virus has only one protein of this series, CrmB. Although CrmB protein sequences are similar to each other, their physicochemical and biological properties show certain species-specific features. We constructed 3D models of complexes formed by TNF-binding domains of variola and cowpox viruses with murine and human TNFs. We also constructed corresponding models with a mutant human TNF. In this mutant TNF, the arginine residue at position 31 involved in receptor binding was replaced by glutamine, characteristic of murine TNF. Analysis of the models showed that the least stable complex should be that formed by cowpox virus CrmB with human TNF, and the Arg31/Gln substitution should significantly stabilize the interaction between cowpox CrmB and mutant human TNF. Experimental comparison of the abilities of recombinant variola and cowpox CrmB proteins to inhibit the cytotoxic action of TNFs confirmed the predictions.  相似文献   

6.
Genes for TNF-binding proteins (CrmBs) of variola virus (VARV), monkeypox virus (MPXV) or cowpox (CPXV) were isolated with PCR from viral genomes and expressed within baculovirus DNAs in Sf21 insect cell line. Properties of resulted recombinant proteins were studied with physical-chemical and immunological methods. It was shown with solid phase enzyme-linked immunoassay that viral proteins inhibited hTNF binding with polyclonal hTNF-antibodies. The strongest inhibitor was VARV-CrmB, the less one was MPXV-CrmB. Biological activity of recombinant protein preparations was studied in the test of neutralization of TNF cytotoxicity for L929 murine fibroblast cells. It was shown that recombinant CrmBs neutralized cytotoxicity of hTNF, mTNF or rTNF in species-specific manner. It was shown also that effectiveness of hTNF cytotoxicity inhibition in vitro with VARV-CrmB exceeded the same effect of polyclonal hTNF-antibody. A possibility of the elaboration of new therapeutics for anti-TNF therapy on the base of CrmB-like proteins is discussed.  相似文献   

7.
DNA fragments containing genes for coding IFN-gamma-binding proteins (IFNgammaBPs) of variola virus (VARV) and monkeypox virus (MPXV) were obtained from viral genomes using PCR. Isolated genes coding desired proteins were expressed in the insect Sf21 cells using baculovirus expression system. Secreted recombinant IFNgammaBPs were isolated from culture medium of infected Sf21 cells through affinity chromatography procedure. SDS-PAAG and Western blot analysis of culture medium of infected insect cells and preparations of purified recombinant IFNgammaBPs indicated that recombinant viral proteins were dimerized even in the absence of ligand (hIFNgamma) unlike their cell (eucaryotic) analogs. Biological activity of the recombinant IFNgammaBPs were studied in the test of protective effect inhibition of hIFNgamma on L68 cells infected with murine encephalomyocarditis virus. It was shown that recombinant IFNgammaBPs had dose-dependent IFNgamma-inhibiting activity. A possibility of the elaboration of new therapeutics for anti-hIFNgamma therapy on the base of IFNgammaBPs is discussed.  相似文献   

8.
9.
10.
11.
Transgenic animal bioreactors represent a powerful tool to address the growing need for therapeutic recombinant proteins. The ability of transgenic animals to produce complex, biologically active recombinant proteins in an efficient and economic manner has stimulated a great deal of interest in this area. As a result, genetically modified animals of several species, expressing foreign proteins in various tissues, are currently being developed. However, the generation of transgenic animals is a cumbersome process and remains problematic in the application of this technology. The advantages and disadvantages of different transgenic systems in relation to other bioreactor systems are discussed.  相似文献   

12.
13.
14.
Wistar rats with collagen-induced arthritis were intramuscularly injected with the recombinant plasmid pcDNA/sTNF-BD encoding the sequence of the TNF-binding protein domain of variola virus CrmB protein (VARV sTNF-BD) or the pcDNA3.1 vector. Quantitative analysis showed that the histopathological changes in the hind-limb joints of rats were most severe in the animals injected with pcDNA3.1 and much less severe in the group of rats injected with pcDNA/sTNF-BD, which indicates that gene therapy of rheumatoid arthritis is promising in the case of local administration of plasmids governing the synthesis of VARV immunomodulatory proteins.  相似文献   

15.
16.
17.
BACKGROUND: Viral vectors are required as gene-delivery systems for gene therapy and basic research. Recombinant adenoviruses (rAds) expressing genes of interest are being developed as research tools and many studies in vitro and in vivo have already been performed with such rAds. METHODS: Shuttle vectors for rAds were constructed with full-length cDNAs and rAds were generated in HEK293 cells by the COS-TPC method. The rAds and shuttle vectors were developed by the Japanese research community and deposited in the RIKEN DNA Bank (RDB; http://www.brc.riken.jp/lab/dna/en/) for distribution to the scientific community. The Recombinant Virus Database (RVD; http://www.brc.riken.jp/lab/dna/rvd/) was established at the RIKEN BioResource Center (BRC) in Japan as the source of information about and distribution of the various resources. RESULTS: The RIKEN BRC is releasing more than 300 recombinant viruses (RVs) and 500 shuttle vectors, as well as all related information, which is included in a newly established database, the RVD. The RVD consists of (i) information about the RVs, the inserted cDNAs and the shuttle vectors; (ii) data about sequence-tagged sites (STSs) that are markers of viral DNAs; and (iii) experimental protocols for the use of RVs. CONCLUSIONS: The new database and available resources should be very useful to scientists who are studying human gene therapy and performing related basic research. It is a web-interfaced flat-file database that can be accessed through the internet. Moreover, all of the resources deposited in the RDB, which is a public facility in Japan, are available to researchers around the world.  相似文献   

18.
To facilitate the purification of wild type p53 protein, we established a recombinant p53 vaccinia viral expression system. Using this efficient eukaryotic expression vector, we found that the expressed p53 proteins retained their specific structural characteristics. A comparison between wild type and mutant p53 proteins showed the conservation of the typical subcellular localization and the expression of specific antigenic determinants. Furthermore, wild type p53 exhibited a typical binding with large T antigen, whereas no binding was detected with mutant p53. Both wild type and mutant p53 proteins were highly stable and constituted 5-7% of total protein expressed in the infected cells. These expression recombinant viruses offer a simple, valuable system for the purification of wild type and mutant p53 proteins that are expressed abundantly in eukaryotic cells.  相似文献   

19.
《The Journal of cell biology》1995,130(6):1401-1412
The cytoskeleton of certain protists comprises an extensive membrane skeleton, the epiplasm, which contributes to the cell shape and patterning of the species-specific cortical architecture. The isolated epiplasm of the ciliated protist Pseudomicrothorax dubius consists of two major groups of proteins with molecular masses of 78-80 kD and 11- 13 kD, respectively. To characterize the structure of these proteins, peptide sequences of two major polypeptides (78-80 kD) as well as a cDNA representing the entire coding sequence of a minor and hitherto unidentified component (60 kD; p60) of the epiplasm have been determined. All three polypeptides share sequence similarities. They contain repeated valine- and proline-rich motifs of 12 residues with the consensus VPVP--V-V-V-. In p60 the central core domain consists of 24 tandemly repeated VPV motifs. Within the repeat motifs positively and negatively charged residues, when present, show an alternating pattern in register with the V and P positions. Recombinant p60 was purified in 8 M urea and dialyzed against buffer. Infrared spectroscopic measurements indicate 30% beta-sheet. Electron microscopy reveals short filamentous polymers with a rather homogenous diameter (approximately 15-20 nm), but variable lengths. The small polymers form thicker filaments, ribbons, and larger sheets or tubes. A core domain similar to that of P. dubius p60 is also found in the recently described epiplasmic proteins of the flagellate Euglena, the so-called articulins. Our results show that the members of this protein family are not restricted to flagellates, but are also present in the distantly related ciliates where they are major constituents of the epiplasm. Comparison of flagellate and ciliate articulins highlights common features of this novel family of cytoskeletal proteins.  相似文献   

20.
The outbreak of monkeypox in the Unites States in the summer of 2003 was the first occurrence of this smallpox-like disease outside of Africa. This limited human epidemic resulted from cross-infection of prairie dogs by imported African rodents. Although there were no human fatalities, this outbreak illustrates that monkeypox is an emerging natural infection and a potential biological weapon. We characterized a virulence factor expressed by monkeypox (monkeypox inhibitor of complement enzymes or MOPICE). We also compared its structure and regulatory function to homologous complement regulatory proteins of variola (SPICE) and vaccinia (VCP). In multiple expression systems, 5-30% of MOPICE, SPICE, and VCP consisted of function-enhancing disulfide-linked homodimers. Mammalian cells infected with vaccinia virus also expressed VCP dimers. MOPICE bound human C3b/C4b intermediate to that of SPICE and VCP. Cofactor activity of MOPICE was similar to VCP, but both were approximately 100-fold less efficient than SPICE. SPICE and VCP, but not MOPICE, possessed decay-accelerating activity for the C3 and C5 convertases of the classical pathway. Additionally, all three regulators possessed heparin-binding capability. These studies demonstrate that MOPICE regulates human complement and suggest that dimerization is a prominent feature of these virulence factors. Thus, our data add novel information relative to the functional repertoire of these poxviral virulence factors. Furthermore, targeting and neutralizing these complement regulatory active sites via mAbs is a therapeutic approach that may enhance protection against smallpox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号