首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
RHO GTPases are key regulators of the actin cytoskeleton and stress fiber formation. In the human uterus, activated RHOA forms a complex with RHO-associated protein kinase (ROCK) which inhibits myosin light chain phosphatase (PPP1R12A), causing a calcium-independent increase in myosin light chain phosphorylation and tension (Ca2+ sensitization). Recently discovered small GTP binding RND proteins can inhibit RHOA and ROCK interaction to reduce calcium sensitization. Very little is known about the expression of RND proteins in the human uterus. We tested the hypothesis that the uterine quiescence observed during gestation is mediated by an increase in RND protein expression inhibiting RHOA-ROCK-mediated PPP1R12A phosphorylation. Immunohistochemistry and immunoblotting were used to determine RHOA and RND protein expression and localization in nonpregnant, pregnant nonlaboring, and laboring patients at term and patients in spontaneous preterm labor. Changes in protein expression estimated by densitometry between different patient groups were measured. A significant increase of RND2 and RND3 protein expression was observed in pregnant relative to nonpregnant myometrium associated with a loss of PPP1R12A phosphorylation. RND transfected myometrial cells demonstrated a dramatic loss of stress fiber formation and a "rounding" phenotype. RND upregulation in pregnancy may inhibit RHOA-ROCK-mediated increase in calcium sensitization to facilitate the uterine quiescence observed during gestation.  相似文献   

2.
In somatic cells, RHOA mediates actin dynamics through a GNA13-mediated signaling cascade involving RHO kinase (ROCK), LIM kinase (LIMK), and cofilin. RHOA can be negatively regulated by protein kinase A (PRKA), and it interacts with members of the A-kinase anchoring (AKAP) family via intermediary proteins. In spermatozoa, actin polymerization precedes the acrosome reaction, which is necessary for normal fertility. The present study was undertaken to determine whether the GNA13-mediated RHOA signaling pathway may be involved in acrosome reaction in bovine caudal sperm, and whether AKAPs may be involved in its targeting and regulation. GNA13, RHOA, ROCK2, LIMK2, and cofilin were all detected by Western blot in bovine caudal sperm. Overlay, immunoprecipitation, and subsequent mass spectrometry analysis identified several RHOA-interacting proteins, including proacrosin, angiotensin-converting enzyme, tubulin, aldolase C, and AKAP4. Using overlay and pulldown techniques, we demonstrate that phosphorylation of AKAP3 increases its interaction with the RHOA-interacting proteins PRKAR2 (the type II regulatory subunit of PRKA, formerly RII) and ropporin (ROPN1, a PRKAR2-like protein, or R2D2). Varying calcium concentrations in pulldown assays did not significantly alter binding to R2D2 proteins. These data suggest that the actin-regulating GNA13-mediated RHOA-ROCK-LIMK-cofilin pathway is present in bovine spermatozoa, that RHOA interacts with proteins involved in capacitation and the acrosome reaction, and that RHOA signaling in sperm may be targeted by AKAPs. Finally, AKAP3 binding to PRKAR2 and ROPN1 is regulated by phosphorylation in vitro.  相似文献   

3.
ROCK (Rho-kinase), an effector molecule of RhoA, phosphorylates the myosin binding subunit (MBS) of myosin phosphatase and inhibits the phosphatase activity. This inhibition increases phosphorylation of myosin light chain (MLC) of myosin II, which is suggested to induce RhoA-mediated assembly of stress fibers and focal adhesions. ROCK is also known to directly phosphorylate MLC in vitro; however, the physiological significance of this MLC kinase activity is unknown. It is also not clear whether MLC phosphorylation alone is sufficient for the assembly of stress fibers and focal adhesions.We have developed two reagents with opposing effects on myosin phosphatase. One is an antibody against MBS that is able to inhibit myosin phosphatase activity. The other is a truncation mutant of MBS that constitutively activates myosin phosphatase. Through microinjection of these two reagents followed by immunofluorescence with a specific antibody against phosphorylated MLC, we have found that MLC phosphorylation is both necessary and sufficient for the assembly of stress fibers and focal adhesions in 3T3 fibroblasts. The assembly of stress fibers in the center of cells requires ROCK activity in addition to the inhibition of myosin phosphatase, suggesting that ROCK not only inhibits myosin phosphatase but also phosphorylates MLC directly in the center of cells. At the cell periphery, on the other hand, MLCK but not ROCK appears to be the kinase responsible for phosphorylating MLC. These results suggest that ROCK and MLCK play distinct roles in spatial regulation of MLC phosphorylation.  相似文献   

4.
Although many mechanisms that activate ROCK are known, corresponding negative regulatory mechanisms required for cytoskeletal plasticity are poorly understood. We have discovered that Coronin1B is a novel attenuator of ROCK signaling. We initially identified Coronin1A in a proteomics screen for ROCK2-binding proteins, and here we demonstrate that Coronin1A/B bind directly to ROCK2 through its PH (Pleckstrin Homology) domain. The consequence of the ROCK2-Coronin1B interaction was tested and revealed that increased expression of Coronin1B inhibited, whereas knockdown of Coronin1B stimulated, phosphorylation of the ROCK substrate myosin light chain phosphatase and subsequently, myosin light chain. Thus, Coronin1B is a previously unrecognized inhibitor of ROCK signaling to myosin. Furthermore, we found that the phosphatase Slingshot IL (SSH1L) was required for Coronin1B to inhibit ROCK signaling. To test the significance of this novel mechanism in tumor cell motility, we investigated its role in neuregulin 1 (NRG-1)-induced cell scattering. Importantly, we found that attenuation of the ROCK signaling by Coronin1B was required for NRG-1 stimulated scattering. Our data support a model in which Coronin1B fine-tunes ROCK signaling to modulate myosin activity, which is important for tumor cell motility.  相似文献   

5.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   

6.
Mechanical stress that arises due to deformation of the extracellular matrix (ECM) either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC) via the RhoA/RhoA-associated protein kinase (ROCK) pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853). Because myosin phosphatase targeting subunit 1 (Thr853) is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form) increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188) that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188) induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188). Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.  相似文献   

7.
As thrombin is proposed to be involved in stimulating myometrial contractility during labor and preterm labor, we aimed to investigate the expression of prothrombin (F7), the precursor of thrombin, its receptors, the protease-activated receptor (PAR) family (F2R, F2RL1, F2RL2, and F2RL3), and prothrombinase FGL2 in human myometrium during pregnancy and labor. Messenger RNA and protein were isolated from human pregnant laboring and nonlaboring myometrial tissue and from human primary myometrial smooth muscle cells. Semiquantitative RT-PCR, real-time fluorescence RT-PCR, Western blotting, and fluorescence microscopy were performed to determine the expression levels of F7, FGL2, F2R, F2RL1, F2RL2, and F2RL3 in the myometrial tissues and cells. The expression of mRNA and protein for these molecules is reported for the first time in human myometrium at term pregnancy, at labor, and in the nonpregnant state. Importantly, an increase in F2R and a significant increase in F2RL3 mRNA expression at labor were demonstrated. Statistically significant increases in F2R and F2RL3 protein expression was also detected in human myometrium at labor. Furthermore, FGL2 mRNA expression at labor, and FGL2 protein expression at term pregnancy and at labor was observed in this tissue for the first time. The expression of F7, FGL2, F2R, F2RL1, F2RL2, and F2RL3 in human myometrium reveals that all the machinery necessary for thrombin activation and cellular activity is present in the myometrium during pregnancy and labor. These data, in conjunction with the demonstrated increase in F2R and F2RL3 expression at labor, suggest a principal role for these molecules in the regulation of myometrial function at labor, including preterm labor.  相似文献   

8.
Zipper-interacting protein kinase (ZIPK) regulates Ca(2+)-independent phosphorylation of both smooth muscle (to regulate contraction) and non-muscle myosin (to regulate non-apoptotic cell death) through either phosphorylation and inhibition of myosin phosphatase, the myosin phosphatase inhibitor CPI17, or direct phosphorylation of myosin light chain. ZIPK is regulated by multisite phosphorylation. Phosphorylation at least three sites Thr-180, Thr-225, and Thr-265 has been shown to be essential for full activity, whereas phosphorylation at Thr-299 regulates its intracellular localization. Herein we utilized an unbiased proteomics screen of smooth muscle extracts with synthetic peptides derived from the sequence of the regulatory phosphorylation sites of the enzyme to identify the protein kinases that might regulate ZIPK activity in vivo. Discrete kinase activities toward Thr-265 and Thr-299 were defined and identified by mass spectrometry as Rho kinase 1 (ROCK1). In vitro, ROCK1 showed a high degree of substrate specificity toward native ZIPK, both stoichiometrically phosphorylating the enzyme at Thr-265 and Thr-299 as well as bringing about activation. In HeLa cells, coexpression of ZIPK with ROCK1 altered the ROCK-induced phenotype of focused stress fiber pattern to a Rho-like phenotype of parallel stress fiber pattern. This effect was also dependent upon phosphorylation at Thr-265. Our findings provide a new regulatory pathway in smooth muscle and non-muscle cells whereby ROCK1 phosphorylates and regulates ZIP kinase.  相似文献   

9.
CPI-17 is a phosphorylation-dependent inhibitory protein for smooth muscle myosin phosphate. Phosphorylation at Thr(38), in vitro, by protein kinase C or Rho-kinase enhances the inhibitory potency toward myosin phosphatase. Phosphorylation of CPI-17 by protein kinase N (PKN), a fatty acid- and Rho-activated serine/threonine kinase, and its effect on smooth muscle myosin phosphatase activity were investigated. CPI-17 was phosphorylated by GST-PKN-CAT, a constitutively active GST-fusion fragment of PKN, to 1.46 mol of P/mol of CPI-17, in vitro. The K(m) value of CPI-17 for PKN was 0.96 microM. Phosphorylation of PKN dramatically increased the inhibitory effect of CPI-17 on myosin phosphatase activity. The major and inhibitory phosphorylation site was identified as Thr(38) using a point mutant of CPI-17 and a phosphorylation-state specific antibody. Thus, CPI-17 is a substrate of PKN and might be involved in the Ca(2+) sensitization of smooth muscle contraction as a downstream effector of Rho and/or arachidonic acid.  相似文献   

10.
Small GTPases are highly regulated proteins that control essential signaling pathways through the activity of their effector proteins. Among the RHOA subfamily, RHOB regulates peculiar functions that could be associated with the control of the endocytic trafficking of signaling proteins. Here, we used an optimized assay based on tripartite split-GFP complementation to localize GTPase-effector complexes with high-resolution. The detection of RHOB interaction with the Rhotekin Rho binding domain (RBD) that specifically recognizes the active GTP-bound GTPase, is performed in vitro by the concomitant addition of recombinant GFP1–9 and a GFP nanobody. Analysis of RHOB-RBD complexes localization profiles combined with immunostaining and live cell imaging indicated a serum-dependent reorganization of the endosomal and membrane pool of active RHOB. We further applied this technology to the detection of RHO-effector complexes that highlighted their subcellular localization with high resolution among the different cellular compartments.  相似文献   

11.
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs. protein kinase C; signal transduction; adenovirus  相似文献   

12.
Protein kinase N1 (PKN1) is a member of the protein kinase C superfamily. Aberrations of PKN1 kinase activity are involved in several human pathological processes, including cancer. We found that PKN family proteins (PKN1/2/3) are phosphorylated in response to antitubulin drug-induced mitotic arrest. We identified cyclin-dependent kinase 1 (CDK1) as the corresponding kinase for PKN protein phosphorylation. CDK1 phosphorylates PKN1 at S533, S537, S562, and S916 in vitro and in cells during drug-induced mitotic arrest. Immunofluorescence staining further confirmed that PKN1 phosphorylation occurs during normal mitosis in a CDK1-dependent manner. Knockdown of PKN1 significantly inhibited anchorage-independent growth and migration without affecting proliferation in multiple cancer cell lines. We further showed that mitotic phosphorylation is essential for PKN1's oncogenic function, as the non-phosphorylatable mutant PKN1-4A failed to rescue anchorage-independent growth and migration in PKN1-knockdown cells. Thus, our findings reveal a novel regulatory mechanism for PKN1 in mitosis and its role in tumorigenesis.  相似文献   

13.
The protein kinase C-potentiated inhibitor protein of 17kDa, called CPI-17, specifically inhibits myosin light chain phosphatase (MLCP). Phosphorylation of Thr-38 in vivo highly potentiates the ability of CPI-17 to inhibit MLCP. Thr-38 has been shown to be phosphorylated in vitro by a number of protein kinases including protein kinase C (PKC), Rho-associated coiled-coil kinase (ROCK), and protein kinase N (PKN). In this study we have focused on the association of protein kinases with CPI-17. Using affinity chromatography and Western blot analysis, we found interaction with all PKC isotypes and casein kinase I isoforms, CKIalpha and CKI. By contrast, ROCK and PKN did not associate with CPI-17, suggesting that PKC may be the relevant kinase that phosphorylates Thr-38 in vivo. CPI-17 interacted with the cysteine-rich domain of PKC and was phosphorylated by all PKC isotypes. We previously found that CPI-17 co-purified with casein kinase I in brain suggesting they are part of a complex and we now show that CPI-17 associates with the kinase domain of CKI isoforms.  相似文献   

14.
Polyamines are required for the early phase of mucosal restitution that occurs as a consequence of epithelial cell migration. Our previous studies have shown that polyamines increase RhoA activity by elevating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) through controlling voltage-gated K(+) channel expression and membrane potential (E(m)) during intestinal epithelial restitution. The current study went further to determine whether increased RhoA following elevated [Ca(2+)](cyt) activates Rho-kinase (ROK/ROCK) resulting in myosin light chain (MLC) phosphorylation. Studies were conducted in stable Cdx2-transfected intestinal epithelial cells (IEC-Cdx2L1), which were associated with a highly differentiated phenotype. Reduced [Ca(2+)](cyt), by either polyamine depletion or exposure to the Ca(2+)-free medium, decreased RhoA protein expression, which was paralleled by significant decreases in GTP-bound RhoA, ROCK-1, and ROKalpha proteins, Rho-kinase activity, and MLC phosphorylation. The reduction of [Ca(2+)](cyt) also inhibited cell migration after wounding. Elevation of [Ca(2+)](cyt) induced by the Ca(2+) ionophore ionomycin increased GTP-bound RhoA, ROCK-1, and ROKalpha proteins, Rho-kinase activity, and MLC phosphorylation. Inhibition of RhoA function by a dominant negative mutant RhoA decreased the Rho-kinase activity and resulted in cytoskeletal reorganization. Inhibition of ROK/ROCK activity by the specific inhibitor Y-27632 not only decreased MLC phosphorylation but also suppressed cell migration. These results indicate that increase in GTP-bound RhoA by polyamines via [Ca(2+)](cyt) can interact with and activate Rho-kinase during intestinal epithelial restitution. Activation of Rho-kinase results in increased MLC phosphorylation, leading to the stimulation of myosin stress fiber formation and cell migration.  相似文献   

15.
Adhesion to the extracellular matrix regulates numerous changes in the actin cytoskeleton by regulating the activity of the Rho family of small GTPases. Here, we report that adhesion and the associated changes in cell shape and cytoskeletal tension are all required for GTP-bound RhoA to activate its downstream effector, ROCK. Using an in vitro kinase assay for endogenous ROCK, we found that cells in suspension, attached on substrates coated with low density fibronectin, or on spreading-restrictive micropatterned islands all exhibited low ROCK activity and correspondingly low myosin light chain phosphorylation, in the face of high levels of GTP-bound RhoA. In contrast, allowing cells to spread against substrates rescued ROCK and myosin activity. Interestingly, inhibition of tension with cytochalasin D or blebbistatin also inhibited ROCK activity within 20 min. The abrogation of ROCK activity by cell detachment or inhibition of tension could not be rescued by constitutively active RhoA-V14. These results suggest the existence of a feedback loop between cytoskeletal tension, adhesion maturation, and ROCK signaling that likely contributes to numerous mechanochemical processes.  相似文献   

16.
The transition of vascular smooth muscle cells (VSMCs) from G2 phase into the M (mitosis) phase of the cell cycle is a tightly controlled process. As an arterial SMC prepares for a G2/M transition, the cell has primed the Cdc2/cyclinB1 complex for activation by the phosphorylation of threonine-161 residue on Cdc2. This phosphorylation is necessary but not sufficient for the VSMC to enter into the M phase. In order to enter into mitosis, a phosphatase, Cdc25C, must first dephosphorylate two other critical residues: tyrosine-15 and threonine-14. If Cdc25C phosphatase activity is blocked, VSMC entry into mitosis is delayed. However, how the activity of Cdc25C is regulated has not been fully illustrated.In an earlier published study we have demonstrated that exposure of the VSMC line, PAC-1, to Transforming growth factor-β1 (TGF-β1), activated PKN (a RhoA-dependent kinase). Here we show that exposure to TGF-β1 delays the G2/M transition by 2 hrs in G1/S synchronized and released PAC-1 culture. This delay is abolished by the RhoA kinase inhibitors, HA1077 or Y-27632. More importantly, RNAi knockdown of PKN expression prevents the G2/M transition delay induced by TGF-β1. Changes in PKN activity temporally correlates to the G2/M transition timing. Moreover, Cdc25C is phosphorylated by the TGF-β1-activated PKN. PKN and Cdc25C coimmunoprecipitate with each other. Finally, PKN and Cdc25C co-localize to the nuclear region only during the critical period of time prior to entry into the M phase. Our data demonstrate that Cdc25C activity is negatively regulated by TGF-β1-stimulated PKN. Once activated through TGF-β1 signaling, PKN binds to and phosphorylates Cdc25C. The physical interaction and phosphorylation result in an inactivation of Cdc25C and delay the VSMC entry into the M stage of the cell cycle.  相似文献   

17.
Role of myosin light chain phosphorylation in the regulation of cytokinesis   总被引:1,自引:0,他引:1  
Phosphorylation of regulatory light chain (RMLC) of myosin II at Ser19/Thr18 is likely to play important roles in controlling the morphological changes seen during cell division of cultured mammalian cells. Phosphorylation of RMLC regulates the activity of myosin II, an essntial motor for cytokinesis, and phosphorylation of RMLC shows dramatic changes during mitosis. Two exzymes, myosin phosphatase and kinase, control phosphorvlation of RMLC. Myosin phosphatase is activated during mitosis, apparently as a result of mitosis-specific phosphorylation of the myosin phosphatase targeting subunit (MYPT). This activation of myosin phosphatase is likely to result in RMLC dephosphorylation, causing the disassemly of stress fibers and focal adhesions during prophase. The phosphorylation of MYPT is lost in cyotokinesis, which would decrease myosin phosphatase activity. At the same time, ROCK (Rho-kinase) probably phosphorylates MYPT at its inhibitory sites, further decreasing the activity of myosin phosphatase. These changes in MYPT phosphorylation would raise RMLC phosphorylation, leading to the activation of myosin II for cyotokinesis. RMLC phosphorylation is also regulated by several RMLC kinases including ROCK (Rho-kinase), MLCK and citron kinase, all of which are localized at cleavage furrows. Future studies should examine whether these multiple kinases are redundant or whether they control distinct aspects of cell division.  相似文献   

18.
The control of smooth muscle contraction is an important factor in maintaining normal intraocular pressure. However, the specific factors causing changes in control by phosphorylation/dephosphorylation schemes in the eye are not well-defined. The purposes of this experiment were to (i) determine the localization of ROCK (Rho-associated, coiled coil-forming kinase) in monkey and rabbit eye tissues and (ii) measure phosphorylation of ROCK substrate during trabecular meshwork or ciliary muscle contraction induced by carbachol. We found that mRNAs for both ROCK I and II were expressed in most eye tissues from rabbit and monkey. Proteins for ROCK I and II were present in all eye tissues studied except lens. When trabecular meshwork or ciliary muscle were incubated with carbachol to induce contraction, phosphorylation of the myosin-binding subunit (MBS) of myosin phosphatase, a substrate for ROCK, started within 1 min and continued for at least 1 h. This phosphorylation was well correlated with contraction of trabecular meshwork or ciliary muscle. These results suggested that ROCK might regulate contraction of trabecular meshwork or ciliary muscle through phosphorylation of MBS of myosin phosphatase.  相似文献   

19.
In human platelets the endocannabinoid 2-arachidonoylglycerol (2-AG) stimulates some important pathways leading to thromboxane B2 formation, calcium intracellular elevation, ATP secretion and actin polymerisation. The aim of the present study was to examine the 2-AG effect on myosin light chain (MLC) phosphorylation and to investigate the mechanisms involved. We demonstrated that 2-AG induced a rapid MLC phosphorylation, stimulating both the RhoA kinase (ROCK) and MLC kinase (MLCK) in a dose and time-dependent manner. In addition MLC phosphorylation was strengthened through the MLC phosphatase inhibition. MLC phosphatase inhibition was accomplished through the RhoA/ROCK and protein kinase C mediated phosphorylation of MLC phosphatase inhibiting subunits MYPT1 and CPI-17. The presence of CB1 receptor in human platelets and the involvement of CB1 receptor in MLC phosphorylation and MLC phosphatase inhibition was shown.  相似文献   

20.
Phosphatase holoenzyme inhibitor (PHI)-1 is one of the newest members of the family of protein phosphatase inhibitor proteins. In isolated enzyme systems, several kinases, including PKC and rho kinase (ROCK), have been shown to phosphorylate PHI-1. However, it is largely unknown whether PHI-1 is phosphorylated in response to agonist stimulation in intact cells. We investigated this question in primary cultured rat aortic vascular smooth muscle cells (VSMCs). Using two-dimensional polyacrylamide gel electrophoresis and immunoblot, we found that there are two major PHI-1 spots under resting conditions: a minor spot with an acidic isoelectric point (pI) and a major spot with a more alkaline pI. Interestingly, U-46619, a G protein-coupled receptor agonist, caused a significant increase in the acidic spot, suggesting that it may represent a phosphorylated form of PHI-1. This was confirmed by phosphatase treatment and by a specific phospho-PHI-1 antibody. Furthermore, we found that angiotensin II, thrombin, and U-46619 increased phosphorylated PHI-1 from 9% of total PHI-1 in resting cells to 18%, 18%, and 30%, respectively. We also found that inhibition of ROCK by Y-27632 or H-1152 selectively diminished U-46619-induced CPI-17 phosphorylation, whereas it did not affect PHI-1 phosphorylation. Activation of ROCK by expressing V14RhoA selectively induced CPI-17 phosphorylation without affecting PHI-1 phosphorylation. In contrast, inhibition of PKC by GF-109203X or by PKC downregulation selectively diminished U-46619-induced PHI-1 phosphorylation without significantly affecting U-46619-induced CPI-17 phosphorylation. Activating PKC by PMA induced PHI-1 phosphorylation. Together, our results show for the first time that agonist induces PHI-1 phosphorylation in VSMCs and divergent kinase signaling couples agonist stimulation to PHI-1 and CPI-17 phosphorylation. signal transduction; myosin phosphatase holoenzyme inhibitor 1; protein kinase C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号