首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the relationship between opening of the permeability transition pore (PTP), mitochondrial depolarization, cytochrome c release, and occurrence of cell death in rat hepatoma MH1C1 cells. Treatment with arachidonic acid or induces PTP opening in situ with similar kinetics, as assessed by the calcein loading-Co(2+) quenching technique (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys. J. 76, 725-734). Yet depolarization, as assessed from the changes of mitochondrial tetramethylrhodamine methyl ester (TMRM) fluorescence, is rapid and extensive with arachidonic acid and slow and partial with. Cyclosporin A-inhibitable release of cytochrome c and cell death correlate with the changes of TMRM fluorescence but not with those of calcein fluorescence. Since pore opening must be accompanied by depolarization, we conclude that short PTP openings are detected only by trapped calcein and may have little impact on cell viability, while changes of TMRM distribution require longer PTP openings, which cause release of cytochrome c and may result in cell death. Modulation of the open time appears to be the key element in determining the outcome of stimuli that converge on the PTP.  相似文献   

2.
Mitochondria constitute a major source of reactive oxygen species and have been proposed to integrate the cellular responses to stress. In animals, it was shown that mitochondria can trigger apoptosis from diverse stimuli through the opening of MTP, which allows the release of the apoptosis-inducing factor and translocation of cytochrome c into the cytosol. Here, we analyzed the role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells. Oxidative stress increased mitochondrial electron transport, resulting in amplification of H(2)O(2) production, depletion of ATP, and cell death. The increased generation of H(2)O(2) also caused the opening of the MTP and the release of cytochrome c from mitochondria. The release of cytochrome c and cell death were prevented by a serine/cysteine protease inhibitor, Pefablock. However, addition of inhibitor only partially inhibited the H(2)O(2) amplification and the MTP opening, suggesting that protease activation is a necessary step in the cell death pathway after mitochondrial damage.  相似文献   

3.
The alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) alters DNA and stimulates the activity of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme involved in DNA repair. The consumption of cellular NAD(+) by PARP-1 is accompanied by ATP depletion, mitochondrial depolarization and release of proapoptotic proteins, but whether a causal relationship exists among these events remains an open question. Most of cellular NAD(+) is stored in the mitochondrial matrix and becomes available for cytosolic and nuclear processes only after its release through the permeability transition pore (PTP), a voltage-gated inner membrane channel. Here we have explored whether MNNG affects mitochondrial function upstream of PARP-1 activation. We show that MNNG has a dual effect on isolated mitochondria. At relatively low concentrations (up to 0.1 mM), it selectively sensitizes the PTP to opening, while at higher concentrations (above 0.5 mM) it inhibits carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP)-stimulated respiration. MNNG caused PTP opening and activation of the mitochondrial proapoptotic pathway in intact HeLa cells, which resulted in cell death that could be prevented by the PTP inhibitor CsA. We conclude that a key event in MNNG-dependent cell death is induction of PTP opening that occurs independently of PARP-1 activation.  相似文献   

4.
The opening of the mitochondrial permeability transition pore (PTP) has been suggested to play a key role in various forms of cell death, but direct evidence in intact tissues is still lacking. We found that in the rat heart, 92% of NAD(+) glycohydrolase activity is associated with mitochondria. This activity was not modified by the addition of Triton X-100, although it was abolished by mild treatment with the protease Nagarse, a condition that did not affect the energy-linked properties of mitochondria. The addition of Ca(2+) to isolated rat heart mitochondria resulted in a profound decrease in their NAD(+) content, which followed mitochondrial swelling. Cyclosporin A(CsA), a PTP inhibitor, completely prevented NAD(+) depletion but had no effect on the glycohydrolase activity. Thus, in isolated mitochondria PTP opening makes NAD(+) available for its enzymatic hydrolysis. Perfused rat hearts subjected to global ischemia for 30 min displayed a 30% decrease in tissue NAD(+) content, which was not modified by extending the duration of ischemia. Reperfusion resulted in a more severe reduction of both total and mitochondrial contents of NAD(+), which could be measured in the coronary effluent together with lactate dehydrogenase. The addition of 0.2 microm CsA or of its analogue MeVal-4-Cs (which does not inhibit calcineurin) maintained higher NAD(+) contents, especially in mitochondria, and significantly protected the heart from reperfusion damage, as shown by the reduction in lactate dehydrogenase release. Thus, upon reperfusion after prolonged ischemia, PTP opening in the heart can be documented as a CsA-sensitive release of NAD(+), which is then partly degraded by glycohydrolase and partly released when sarcolemmal integrity is compromised. These results demonstrate that PTP opening is a causative event in reperfusion damage of the heart.  相似文献   

5.
The opening of the cyclosporin-sensitive pore in the inner membrane of mitochondria in rat thymocytes was studied. In thymocytes with digitonin-permeabilized plasma membrane, the mitochondrial pore was induced by Ca2+ overload, by uncoupling, by oxidation or cross-linking of membrane dithiols, and by atractyloside, a specific inhibitor of the adenine nucleotide transporter. Pore opening was prevented by cyclosporin A (CsA) and by its non-immunosuppressive analog MeVal-CsA. The sensitivity of the pore to CsA was decreased by atractyloside and practically disappeared when it was added in combination with uncoupler. The main properties of the pore in mitochondria from thymocytes and from hepatocytes are the same. Release of Ca2+ from thymocyte mitochondria induced by uncoupling is mediated by a specific uniporter and by the pore with similar rates.  相似文献   

6.
Previous studies have shown that microcystin-LR (MLR), a specific hepatotoxin, induces onset of mitochondrial permeability transition (MPT) and apoptosis in cultured rat hepatocytes. Here we attempted to investigate the downstream events after the onset of MPT in MLR-treated hepatocytes. Various mitochondrial electron transport chain (ETC) inhibitors effectively prevented the onset of MPT, suggesting that the mitochondrial ETC plays an important role in MLR-induced MPT. MLR also induced mitochondrial cytochrome c release, which can be prevented by a specific MPT inhibitor (cyclosporin A, CsA), and by various ETC inhibitors. Interestingly, the release of cytochrome c did not activate caspase-9 and -3, the main caspases involved in apoptosis. Instead, MLR activated calpain in rat hepatocytes, probably through the increase of intracellular Ca(2+) released from mitochondria. Both ALLN and ALLM, two calpain inhibitors, significantly blocked MLR-induced calpain activation and subsequent cell death. CsA also prevented MLR-induced calpain activation and cell death, suggesting that the activation of calpain may be a post-mitochondrial event. These data demonstrate for the first time that calpain rather than caspases plays an important role in MLR-induced apoptosis.  相似文献   

7.
The mitochondrial permeability transition (MPT) initiated by reactive oxygen species (ROS) plays an essential role in ischemia–reperfusion (IR) injury. Iron is a critical catalyst for ROS formation, and intracellular chelatable iron promotes oxidative injury-induced and MPT-dependent cell death in hepatocytes. Accordingly, our aim was to investigate the role of chelatable iron in IR-induced ROS generation, MPT formation, and cell death in primary rat hepatocytes. To simulate IR, overnight-cultured hepatocytes were incubated anoxically at pH 6.2 for 4 h and reoxygenated at pH 7.4. Chelatable Fe2+, ROS, and mitochondrial membrane potential were monitored by confocal fluorescence microscopy of calcein, chloromethyldichlorofluorescein, and tetramethylrhodamine methyl ester, respectively. Cell killing was assessed by propidium iodide fluorimetry. Ischemia caused progressive quenching of cytosolic calcein by more than 90%, signifying increased chelatable Fe2+. Desferal and starch–desferal 1 h before ischemia suppressed calcein quenching. Ischemia also induced quenching and dequenching of calcein loaded into mitochondria and lysosomes, respectively. Desferal, starch–desferal, and the inhibitor of the mitochondrial Ca2+ uniporter (MCU), Ru360, suppressed mitochondrial calcein quenching during ischemia. Desferal, starch–desferal, and Ru360 before ischemia also decreased mitochondrial ROS formation, MPT opening, and cell killing after reperfusion. These results indicate that lysosomes release chelatable Fe2+ during ischemia, which is taken up into mitochondria by MCU. Increased mitochondrial iron then predisposes to ROS-dependent MPT opening and cell killing after reperfusion.  相似文献   

8.
Nanosecond, high‐voltage electric pulses (nsEP) induce permeabilization of the plasma membrane and the membranes of cell organelles, leading to various responses in cells including cytochrome c release from mitochondria and caspase activation associated with apoptosis. We report here evidence for nsEP‐induced permeabilization of mitochondrial membranes in living cells. Using three different methods with fluorescence indicators—rhodamine 123 (R123), tetramethyl rhodamine ethyl ester (TMRE), and cobalt‐quenched calcein—we have shown that multiple nsEP (five pulses or more, 4 ns duration, 10 MV/m, 1 kHz repetition rate) cause an increase of the inner mitochondrial membrane permeability and an associated loss of mitochondrial membrane potential. These effects could be a consequence of nsEP permeabilization of the inner mitochondrial membrane or the activation of mitochondrial membrane permeability transition pores. Plasma membrane permeabilization (YO‐PRO‐1 influx) was detected in addition to mitochondrial membrane permeabilization. Bioelectromagnetics 33:257–264, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Mitochondrial role in ceramide-induced apoptosis pathway remains unclear. Direct effects of ceramide on mitochondria (cytochrome c release, respiratory chain inhibition, oxygen radicals production...) have been reported [1, 2] and we previously showed that addition of ceramide to intact cells or isolated mitochondria triggers mitochondrial swelling which appeared to be insensitive to cyclosporin A (CsA) [3, 4]. The purpose of this work was to determine to which extent this CsA-insensitive mitochondrial swelling, therefore distinct from permeability transition, participates to ceramide-induced apoptosis. To achieve this, we applied Top-Down analysis of integrated mitochondrial function [5], in order to better understand ceramide-induced mitochondrial dysfunctions.  相似文献   

10.
Peroxisome proliferators have been found to induce hepatocarcinogenesis in rodents, and may cause mitochondrial damage. Consistent with this, clofibrate increased hepatic mitochondrial oxidative DNA and protein damage in mice. The present investigation aimed to study the mechanism by which this might occur by examining the effect of clofibrate on freshly isolated mouse liver mitochondria and a cultured hepatocyte cell line, AML-12. Mitochondrial membrane potential (Delta Psi(m)) was determined by using the fluorescent dye 5,5',6,6'-tetrachloro-1,1', 3,3'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1) and tetramethylrhodamine methyl ester (TMRM). Application of clofibrate at concentrations greater than 0.3 mM rapidly collapsed the Delta Psi(m) both in liver cells and in isolated mitochondria. The loss of Delta Psi(m) occurred prior to cell death and appeared to involve the mitochondrial permeability transition (MPT), as revealed by calcein fluorescence studies and the protective effect of cyclosporin A (CsA) on the decrease in Delta Psi(m). Levels of reactive oxygen species (ROS) were measured with the fluorescent probes 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate (DCFDA) and dihydrorhodamine 123 (DHR123). Treatment of the hepatocytes with clofibrate caused a significant increase in intracellular and mitochondrial ROS. Antioxidants such as vitamin C, deferoxamine, and catalase were able to protect the cells against the clofibrate-induced loss of viability, as was CsA, but to a lesser extent. These results suggest that one action of clofibrate might be to impair mitochondrial function, so stimulating formation of ROS, which eventually contribute to cell death.  相似文献   

11.
Ca2+-uptake accompanied with mitochondrial permeability transition pore (MPTP) opening is studied in rat liver mitochondria. In conditions of MPTP opening, as well as in conditions of MPTP blockage by cyclosporine A (CsA), Ca2+-uptake in mitochondria is counterbalanced by proton efflux into incubation medium. Independent of MPTP opening, observed stoichiometry of this exchange is 1Ca2+ : 1H+. MPTP opening dramatically decreases Ca2+-uptake in mitochondria: from approximately 400 nmol/mg protein in the presence of CsA to approximately 80-100 nmol/mg protein due to the increased mitochondrial membrane permeability. In the absence of CsA Ca2+-uptake is accompanied by the insensitive to Ca2+-uniporter blocker, ruthenium red (RR), release of Ca2+ from mitochondria which corresponds to as well RR-insensitive, but sensitive to CsA uptake of H+ into mitochondrial matrix. This calcium-proton exchange resulting from MPTP opening is observed only when Ca2+ uptake into matrix exceeds some basal level. The data are consistent with an assumption that, contrary to Ca2+-uniporter, MPTP has its own proton conductance. MPTP opening provides exchange of Ca2+ between mitochondria and medium which is coupled to the counterflow of protons into matrix space. Obtained data elucidate the physiological role of MPTP as regulatory mechanism for control of Ca2+-uptake level and intramitochondrial pH.  相似文献   

12.
We have studied the effects of GD3 ganglioside on mitochondrial function in isolated mitochondria and intact cells. In isolated mitochondria, GD3 ganglioside induces complex changes of respiration that depend on the substrate being oxidized. However, these effects are secondary to opening of the cyclosporin A-sensitive permeability transition pore and to the ensuing swelling and cytochrome c depletion rather than to an interaction with the respiratory chain complexes. By using a novel in situ assay based on the fluorescence changes of mitochondrially entrapped calcein (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys. J. 76, 725-734), we unequivocally show that GD3 ganglioside also induces the mitochondrial permeability transition in intact cells and that this event precedes apoptosis. The mitochondrial effects of GD3 ganglioside are selective, in that they cannot be mimicked by either GD1a or GM3 gangliosides, and they are fully sensitive to cyclosporin A, which inhibits both the mitochondrial permeability transition in situ and the onset of apoptosis induced by GD3 ganglioside. These results provide compelling evidence that opening of the permeability transition pore is causally related to apoptosis.  相似文献   

13.
High fluence low‐power laser irradiation (HF‐LPLI) can induce cell apoptosis via the mitochondria/caspase‐3 pathway. Here, we further investigated the mechanism involved in the apoptotic process in human lung adenocarcinoma cells (ASTC‐a‐1) at a laser irradiation fluence of 120 J/cm2 (633 nm). Cytochrome c release was ascribed to mitochondrial permeability transition (MPT) because the release was prevented by cyclosporine (CsA), a specific inhibitor of MPT. Furthermore, mitochondrial permeability for calcein (~620 Da) was another evidence for the MPT induction under HF‐LPLI treatment. A high‐level intracellular reactive oxygen species (ROS) generation was observed after irradiation. The photodynamically produced ROS caused onset of MPT, as the ROS scavenger docosahexaenoic acid (DHA) prevented the MPT. However, CsA failed to prevented cell death induced by HF‐LPLI, indicating the existence of other signaling pathways. Following laser irradiation, Bax activation occurred after mitochondrial depolarization and cytochrome c release, indicating Bax activation was a downstream event. In the presence of CsA, Bax was still activated at the end‐stage of apoptotic process caused by HF‐LPLI, suggesting that Bax was involved in an alternative‐signaling pathway, which was independent of MPT. Under HF‐LPLI treatment, cell viabilities due to pre‐treatment with DHA, CsA, or Bax small interfering RNA (siRNA) demonstrated that the MPT signaling pathway was dominant, while Bax signaling pathway was secondary, and more importantly ROS mediated both pathways. Taken together, these results showed that HF‐LPLI induced cell apoptosis via the CsA‐sensitive MPT, which was ROS‐dependent. Furthermore, there existed a secondary signaling pathway through Bax activation. The observed link between MPT and triggering ROS could be a fundamental phenomenon in HF‐LPLI‐induced cell apoptosis. J. Cell. Physiol. 218: 603–611, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Calcein is a fluorescent probe that is widely used in studies of cell viability and mitochondrial function by microscopy fluorescence imaging. It was found to have a strong photosensitizing action that prevalently involves the generation of reactive oxygen species (ROS). The photooxidation properties of calcein in solution were studied in the presence of histidine and tryptophan as oxidizable substrates. The photodegradation of histidine was mainly mediated by singlet oxygen (1O2), as shown by the inhibitory effect of sodium azide, a specific 1O2 scavenger. On the other hand, mixed photosensitization mechanisms were present when tryptophan was used as the target of the calcein-stimulated photoprocess. In addition to 1O2, hydroxyl radicals and hydrogen peroxide were involved as reactive species, as shown by using mannitol and catalase as scavengers. The calcein-photosensitized alterations of mitochondria as a potential source of artifacts in confocal microscopy studies of cells were considered. Irradiation of isolated mitochondria with visible light (500-600 nm) in the presence of calcein induced opening of the permeability transition (PT) pore. The extent of the mitochondrial membrane photodamage, however, was modulated by the nature of the calcein environment. Thus, pore opening was triggered at short irradiation times and low dye concentrations when calcein was dissolved in the bulk medium. On the contrary, calcein concentrated in the matrix space was rather inefficient as photosensitizer even at concentrations 10 times higher than those present in the external medium.  相似文献   

15.
Mitochondria are morphologically and functionally heterogeneous within cells   总被引:20,自引:0,他引:20  
We investigated whether mitochondria represent morphologically continuous and functionally homogenous entities within single intact cells. Physical continuity of mitochondria was determined by three-dimensional reconstruction of fluorescence from mitochondrially targeted DsRed1 or calcein. The mitochondria of HeLa, PAEC, COS-7, HUVEC, hepatocytes, cortical astrocytes and neuronal cells all displayed heterogeneous distributions and were of varying sizes. There was a denser aggregation of mitochondria in perinuclear positions than in the cell periphery, where individual isolated mitochondria could be seen clearly. Using fluorescence-recovery after photobleaching, we observed that DsRed1 and calcein were highly mobile within the matrix of individual mitochondria, and that mitochondria within a cell were not lumenally continuous. Mitochondria were not electrically coupled, since only individual mitochondria were observed to depolarize following irradiation of TMRE-loaded cells. Functional heterogeneity of mitochondria in single cells was observed with respect to membrane potential, sequestration of hormonally evoked cytosolic calcium signals and timing of permeability transition pore opening in response to tert-butyl hydroperoxide. Our data indicate that mitochondria within individual cells are morphologically heterogeneous and unconnected, allowing them to have distinct functional properties.  相似文献   

16.
Imaging the permeability pore transition in single mitochondria.   总被引:11,自引:0,他引:11       下载免费PDF全文
In mitochondria the opening of a large proteinaceous pore, the "mitochondrial permeability transition pore" (MTP), is known to occur under conditions of oxidative stress and matrix calcium overload. MTP opening and the resulting cellular energy deprivation have been implicated in processes such as hypoxic cell damage, apoptosis, and neuronal excitotoxicity. Membrane potential (delta psi(m)) in single isolated heart mitochondria was measured by confocal microscopy with a voltage-sensitive fluorescent dye. Measurements in mitochondrial populations revealed a gradual loss of delta psi(m) due to the light-induced generation of free radicals. In contrast, the depolarization in individual mitochondria was fast, sometimes causing marked oscillations of delta psi(m). Rapid depolarizations were accompanied by an increased permeability of the inner mitochondrial membrane to matrix-entrapped calcein (approximately 620 Da), indicating the opening of a large membrane pore. The MTP inhibitor cyclosporin A significantly stabilized delta psi(m) in single mitochondria, thereby slowing the voltage decay in averaged recordings. We conclude that the spontaneous depolarizations were caused by repeated stochastic openings and closings of the transition pore. The data demonstrate a much more dynamic regulation of membrane permeability at the level of a single organelle than predicted from ensemble behavior of mitochondrial populations.  相似文献   

17.
The mitochondrial transition pore (MTP) is implicated as a mediator of cell injury and death in many situations. The MTP opens in response to stimuli including reactive oxygen species and inhibition of the electron transport chain. Sporadic Parkinson’s disease (PD) is characterized by oxidative stress and specifically involves a defect in complex I of the electron transport chain. To explore the possible involvement of the MTP in PD models, we tested the effects of the complex I inhibitor and apoptosis-inducing toxin N-methyl-4-phenylpyridinium (MPP+) on cyclosporin A (CsA)-sensitive mitochondrial swelling and release of cytochrome c. In the presence of Ca2+ and Pi, MPP+ induced a permeability transition in both liver and brain mitochondria. MPP+ also caused release of cytochrome c from liver mitochondria. Rotenone, a classic non-competitive complex I inhibitor, completely inhibited MPP+-induced swelling and release of cytochrome c. The MPP+-induced permeability transition was synergistic with nitric oxide and the adenine nucleotide translocator inhibitor atractyloside, and additive with phenyl arsine oxide cross-linking of dithiol residues. MPP+-induced pore opening and cytochrome c release were blocked by CsA, the Ca2+ uniporter inhibitor ruthenium red, the hydrophobic disulfide reagent N-ethylmaleimide, butacaine, and the free radical scavenging enzymes catalase and superoxide dismutase. MPP+ neurotoxicity may derive from not only its inhibition of complex I and consequent ATP depletion, but also from its ability to open the MTP and to release mitochondrial factors including Ca2+ and cytochrome c known to be involved in apoptosis.  相似文献   

18.
We have investigated the effects of arachidonic and palmitic acids in isolated rat liver mitochondria and in rat hepatoma MH1C1 cells. We show that both compounds induce the mitochondrial permeability transition (PT). At variance from palmitic acid, however, arachidonic acid causes a PT at concentrations that do not cause PT-independent depolarization or respiratory inhibition, suggesting a specific effect on the PT pore. When added to intact MH1C1 cells, arachidonic acid but not palmitic acid caused a mitochondrial PT in situ that was accompanied by cytochrome c release and rapidly followed by cell death. All these effects of arachidonic acid could be prevented by cyclosporin A but not by the phospholipase A(2) inhibitor aristolochic acid. In contrast, tumor necrosis factor alpha caused phospholipid hydrolysis, induction of the PT, cytochrome c release, and cell death that could be inhibited by both cyclosporin A and aristolochic acid. These findings suggest that arachidonic acid produced by cytosolic phospholipase A(2) may be a mediator of tumor necrosis factor alpha cytotoxicity in situ through induction of the mitochondrial PT.  相似文献   

19.
We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl2 similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons.  相似文献   

20.
The permeability transition pore (PTP) is a mitochondrial inner membrane Ca(2+)-sensitive channel that plays a key role in different models of cell death. Because functional links between the PTP and the respiratory chain complex I have been reported, we have investigated the effects of rotenone on PTP regulation in U937 and KB cells. We show that rotenone was more potent than cyclosporin A at inhibiting Ca(2+)-induced PTP opening in digitonin-permeabilized cells energized with succinate. Consistent with PTP regulation by electron flux through complex I, the effect of rotenone persisted after oxidation of pyridine nucleotides by duroquinone. tert-butyl hydroperoxide induced PTP opening in intact cells (as shown by mitochondrial permeabilization to calcein and cobalt), as well as cytochrome c release and cell death. All these events were prevented by rotenone or cyclosporin A. These data demonstrate that respiratory chain complex I plays a key role in PTP regulation in vivo and confirm the importance of PTP opening in the commitment to cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号