首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
3-Deoxy-3-azido-25-hydroxyvitamin D3 was covalently incorporated in the 25-hydroxyvitamin D3 binding site of purified human plasma vitamin D binding protein. Competition experiments showed that 3-deoxy-3-azido-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 bind at the same site on the protein. Tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was synthesized from tritiated 25-hydroxyvitamin D3, retaining the high specific activity of the parent compound. The tritiated azido label bound reversibly to human vitamin D binding protein in the dark and covalently to human vitamin D binding protein after exposure to ultraviolet light. Reversible binding of tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was compared to tritiated 25-hydroxyvitamin D3 binding to human vitamin D binding protein. Scatchard analysis of the data indicated equivalent maximum density binding sites with a KD,app of 0.21 nM for 25-hydroxyvitamin D3 and a KD,app of 1.3 nM for the azido derivative. Covalent binding was observed only after exposure to ultraviolet irradiation, with an average of 3% of the reversibly bound label becoming covalently bound to vitamin D binding protein. The covalent binding was reduced 70-80% when 25-hydroxyvitamin D3 was present, indicating strong covalent binding at the vitamin D binding site of the protein. When tritiated 3-deoxy-3-azido-25-hydroxyvitamin D3 was incubated with human plasma in the absence and presence of 25-hydroxyvitamin D3, 12% of the azido derivative was reversibly bound to vitamin D binding protein. After ultraviolet irradiation, four plasma proteins covalently bound the azido label, but vitamin D binding protein was the only protein of the four that was unlabeled in the presence of 25-hydroxyvitamin D3.  相似文献   

4.
DExD-box helicases are involved in all aspects of cellular RNA metabolism. Conserved domains 1 and 2 contain nine signature motifs that are responsible for nucleotide binding, RNA binding and ATP hydrolysis. The human DEAD-box helicase DDX3X has been associated with several different cellular processes, such as cell-growth control, mRNA transport and translation, and is suggested to be essential for the export of unspliced/partially spliced HIV mRNAs from the nucleus to the cytoplasm. Here, the crystal structure of conserved domains 1 and 2 of DDX3X, including a DDX3-specific insertion that is not generally found in human DExD-box helicases, is presented. The N-terminal domain 1 and the C-terminal domain 2 both display RecA-like folds comprising a central beta-sheet flanked by alpha-helices. Interestingly, the DDX3X-specific insertion forms a helical element that extends a highly positively charged sequence in a loop, thus increasing the RNA-binding surface of the protein. Surprisingly, although DDX3X was crystallized in the presence of a large excess of ADP or the slowly hydrolyzable ATP analogue ATPgammaS the contaminant AMP was seen in the structure. A fluorescent-based stability assay showed that the thermal stability of DDX3X was increased by the mononucleotide AMP but not by ADP or ATPgammaS, suggesting that DDX3X is stabilized by AMP and elucidating why AMP was found in the nucleotide-binding pocket.  相似文献   

5.
6.
Deuterated methylene groups have been introduced synthetically in selected positions of the sn-2 palmitoyl chain of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and deuterated methyl groups in the sn-1 and sn-2 palmitoyl chains as well as in the sn-3 phosphocholine group.The vibrational spectra of seven such deuterium labelled derivatives of the title compound have been studied as the assignment of the C–D stretching vibrations is discussed.  相似文献   

7.
27-nor-25-Hydroxyvitamin D3, 26,27-bisnor-25-hydroxyvitamin D3, and 22-27-hexanor-20-hydroxyvitamin D3 and the corresponding 5,6-trans isomers have been synthesized. All compounds were tested for their ability to induce intestinal calcium transport and bone calcium mobilization in normal and anephric rats. The 27-nor- and 26,27-bisnor-25-hydroxyvitamin D3 analog are capable of stimulating intestinal calcium transport and bone calcium mobilization in normal rats but are 10 to 100 times less active than 25-hydroxyvitamin D3. Although these analogs are inactive in anephric rats, their corresponding 5,6-trans isomer are capable of stimulating both intestine and bone activity in these animals. The 22-27-hexanor-20-hydroxyvitamin D3 and its corresponding 5,6-trans isomer are incapable of stimulating either intestinal calcium transport or bone calcium mobilization. These results suggest that minor alterations in the side chain significantly decrease the biopotency of 25-hydroxyvitamin D3. Since these analogs are biologically active in normal but not in anephric animals, it appears that the kidney 1alpha-hydroxylation is necessary for activity. Since 22-27-hexanor=20-hydroxyvitamin D3 and its corresponding 5,6-trans analog are biologically inactive, it is likely that at least part of the side chain is necessary for 25-hydroxyvitamin D3 to stimulate intestinal calcium transport and bone calcium mobilization.  相似文献   

8.
Concomitant intravenous administration of 25-hydroxycholecalciferol and [3H] vitamin D3 to vitamin D-depleted rats did not affect the conversion of [3H] vitamin D3 to 25-OH-[3H] vitamin D3 as indicated by a serum 25-OH-[3H] vitamin D3 to content at 3 and 24 h identical to those observed in animals receiving [3H] vitamin D3 alone. Similarly, pre-dosing with 25-OH vitamin D3 24 h earlier did not affect the conversion. Co-administration to vitamin D depleted rats of vitamin D2 or D3, at 200-fold higher doses than a control group receiving tracer [3H] vitamin D3 alone, resulted in serum 25-OH vitamin D levels that were 15-20 fold higher than the control, indicating a similar metabolic fate for synthetic and natural vitamin D in rats and the ability of increased substrate to overwhelm hepatic constraints on 25-OH vitamin D production. Following intravenous administration of 25-OH-[3H] vitamin D3 to vitamin D depleted rats, hepatic 3H content decreased in parallel with serum radioactivity. Hepatic accumulation of intravenously administered vitamin D3 ([14C] vitamin D3) alone or with 25-OH-[3H] vitamin D3, by vitamin D-depleted rats revealed a marked preference for vitamin D3; the hepatic accumulation of [14C] vitamin D3 increased to 35% of the dose by 45 min, at which time 25-OH-[3H] vitamin D3 hepatic content was 7-fold less, and decreasing. Chromatography of extracts of hepatic subcellular fractions revealed more [14C] vitamin D3 than 25-OH-[3H] vitamin D3 in the microsomes, the reported site of calciferol 25-hydroxylase. Circulating 25-OH vitamin D, therefore, has comparatively minimal potential for hepatic accumulation. Product inhibition of the calciferol 25-hydroxylase must, therefore, result from recently synthesized hepatic 25-OH vitamin D, and is not affected by exogenous 25-OH vitamin D3.  相似文献   

9.
The biological activity of 24,24-difluoro-25-hydroxyvitamin D3 was assessed using elevation of serum phosphorus and healing of rickets of vitamin D-deficient rats. Various levels of 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were administered daily for 2 weeks in the dose range of 6.5 to 3250 pmol after feeding rats a low phosphorus, vitamin D-deficient diet for 3 weeks. Vitamin D3 was concurrently tested at dose levels of 650 and 3250 pmol. 24,24-Difluoro-25-hydroxyvitamin D3 is approximately equipotent with 25-hydroxyvitamin D3 in stimulation of growth, mineralization of rachitic bone, and elevation of serum inorganic phosphorus. Radiological manifestations of rickets were also equally improved by 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3. Compared with vitamin D3, these compounds were approximately 5 to 10 times more active in mineralization using rats on a low phosphorus, vitamin D-deficient diet. The functional role, if any, for 24-hydroxylated vitamin D compounds, such as 24,25-dihydroxyvitamin D3, therefore remains obscure. It appears that vitamin D compounds that cannot be 24-hydroxylated evoke no disorder in bone mineralization.  相似文献   

10.
11.
12.
An anti-viral enzyme from Phytolacca americana, known to inhibit protein synthesis has been crystallized in a form useful for high resolution x-ray diffraction studies. Cracking of crystals due to the introduction of heavy metals can be reduced by cross linking with glutaraldehyde using a rapid fixation method. Several apparent isomorphous heavy metal derivatives of the crystal have been found. The molecular weight of the protein has been reevaluated as 31,000 daltons.  相似文献   

13.
When the microsomal fraction of Saccharomyces cerevisiae was incubated with farnesyl pyrophosphate or presqualene pyrophosphate in the presence of Mn2+, dehydrosqualene was formed. Incubation of the reaction mixture in the presence of NADPH gave squalene, not dehydrosqualene, as the product. Little dehydrosqualene was formed when Mn2+ was replaced with Mg2+. These observations suggest that dehydrosqualene formation is closely associated with squalene synthesis in yeast, which synthesizes neither carotenes nor related pigments.  相似文献   

14.
24-Nor-25-hydroxyvitamin D3, an analog of 25-hydroxyvitamin D3, has been chemically synthesized in six steps. This steroid was tested in chicks, in vivo, for its ability to generate the classic vitamin D mediated responses of stimulation of intestinal calcium transport and bone calcium mobilization. Although the 24-nor-25-OH-vitamin D3 itself exhibited no biological activity in these assays, the analog was found to inhibit the normal responses produced by a physiological dose of vitamin D3. These results suggest that 24-nor-25-OH-vitamin D3 may satisfy certain requirements expected of a calciferol “anti-vitamin.”  相似文献   

15.
16.
Vitamin D3-deficient chick kidney microsomes invitro metabolize 25-hydroxy-[26(27)-methyl-3H]-vitamin D3 to yet structurally unidentified polar metabolites previously designated MIC-I and MIC-II. Kidney microsomes of vitamin D3-repleted chicks could not be demonstrated to produce these metabolites when 3H was the radioactive isotope in positions C-26 and C-27 of the substrate. However, when 25-hydroxy-[26,27-14C]-vitamin D3 was the radioactive substrate, MIC-I and MIC-II production was independent of the vitamin D3 status of the chicks. These results suggest that under conditions of vitamin D3-sufficiency, there is augmented sequential kidney metabolism of 25-hydroxyvitamin D3 to products with modified side-chains involving C-26 and/or C-27. It is possible that this metabolism is responsible for the regulation of kidney cellular concentrations of 25-hydroxyvitamin D3.  相似文献   

17.
The first practical fluorometric assay of plasma 25-hydroxyvitamin D3 (25-OH-D3) and 24R,25-dihydroxyvitamin D3 (24,25-(OH)2D3) is described. The method uses a highly fluorescent dienophile, 4-[2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalyl)ethyl]-1, 2,4- triazoline-3,5-dione (DMEQ-TAD), to fluorescence-label vitamin D. Vitamin D metabolites were roughly purified with a short cartridge column followed by HPLC, labeled with DMEQ-TAD, and the product was analyzed on HPLC. In the assay of 25-OH-D3 the new fluorometric method was compared with the HPLC-uv method and was confirmed to be as accurate and reliable (CV, 4-5%) as the HPLC-uv method. Plasma 24,25-(OH)2D3 was accurately assayed by the HPLC-FL method, where the standard addition method was successfully used to calculate the overall recovery.  相似文献   

18.
Extraction, lipid-reduction, and chromatographic methods suitable for the resolution and subsequent quantitation of vitamin D2, vitamin D3, 25-hydroxyvitamin D2, and 25-hydroxy-vitamin D3 from human milk are described. This procedure utilizes a methanol:methylene chloride extraction, precipitation of unwanted lipids with cold methanol and ether, backwash with alkaline buffer, silica Sep-Pak preparative chromatography, normal- and reverse-phase high-performance liquid chromatography with final quantitation of the antirachitic sterols by competitive protein binding assay. The described assay was used to determine these antirachitic sterols in milk from women receiving various supplements of vitamin D or undergoing ultraviolet phototherapy.  相似文献   

19.
Hapten derivatives of 25-hydroxyvitamin D(3) and 1alpha,25-dihydroxyvitamin D(3) were synthesized using the Wittig-Horner approach. Both haptens bearing a carboxylic group at the side chain that can be linked to a protein for raising antibodies of potential utility for the determination of 25-hydroxyvitamin D(3), 1alpha,25-dihydroxyvitamin D(3) and 1alpha-hydroxylated vitamin D(3) analogues.  相似文献   

20.
The metabolism of [3H]vitamin D3 was studied in cultured human keratinocytes (CHK). Intact CHK were incubated for 1, 6, 12, 24 and 48 h with [3H]vitamin D3 and the lipid soluble fractions from the media and cells were extracted by high-performance liquid chromatography (HPLC). Vitamin D3 and its metabolites, 25-OH-D3, 24,25(OH)2D3 and 1,25(OH)2D3 were added to the extracts, as markers, prior to HPLC. HPLC analysis of the lipid extracts did not reveal any monohydroxylated metabolites. CHK incubated for one hour with [3H]25-OH-D3 showed a 10 +/- 4% conversion to [3H]1,25(OH)2D3 whereas no conversion to [3H]1,25(OH)2D3 was observed in control CHKs that were boiled prior to incubation with [3H]25-OH-D3. These findings suggest that cultured neonatal keratinocytes are incapable of metabolizing vitamin D3 to 25-OH-D3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号