首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method was developed to model and optimize selection on multiple identified quantitative trait loci (QTLs) and polygenic estimated breeding value, in order to maximize a weighted sum of cumulative response to selection over multiple years in a population with overlapping generations. The model allows for a population with multiple sex-age classes, different number of age class between sires and dams, and varied genetic contribution of the age class. The optimization problem was formulated as a multiple-stage optimal control problem and solved by a forward and backward iteration loop. The practical utility of this method was illustrated in an example of pig breeding population with overlapping generations. The selection response of this method was compared with standard QTL selection and conventional best linear unbiased prediction (BLUP) selection. Simulation results show that optimal selection achieved greater selection response than either standard QTL or conventional BLUP selections. The influence of population structure on optimal selection was significant. Optimal QTL selection and standard QTL selection were more favorable in a population with overlapping generations than discrete generations, and obtained more benefits relative to conventional BLUP selection in a population with overlapping generations. Optimal QTL selection relative to conventional BLUP selection is also more favorable following increase of genetic contribution of two-year-old boars and sows in a population with overlapping generations.  相似文献   

2.
In this paper, we address the multiple peak alignment problem in sequential data analysis with an approach based on the Gaussian scale-space theory. We assume that multiple sets of detected peaks are the observed samples of a set of common peaks. We also assume that the locations of the observed peaks follow unimodal distributions (e.g., normal distribution) with their means equal to the corresponding locations of the common peaks and variances reflecting the extension of their variations. Under these assumptions, we convert the problem of estimating locations of the unknown number of common peaks from multiple sets of detected peaks into a much simpler problem of searching for local maxima in the scale-space representation. The optimization of the scale parameter is achieved using an energy minimization approach. We compare our approach with a hierarchical clustering method using both simulated data and real mass spectrometry data. We also demonstrate the merit of extending the binary peak detection method (i.e., a candidate is considered either as a peak or as a nonpeak) with a quantitative scoring measure-based approach (i.e., we assign to each candidate a possibility of being a peak).  相似文献   

3.
唐国庆  李学伟 《遗传学报》2006,33(5):429-440
一种扩展的方法能够在一个世代重叠的群体内对多个数量性状位点选择进行最优化,目的是为了在整个计划期内获得最大的累积反应加权和。该模型允许群体有多个性别年龄组、公母畜间有不同的年龄组数、各年龄组有不同的遗传贡献。整个最优化问题被描述成一个多阶段系统优化控制问题,通过一个向前和向后的迭代循环解决。用一个世代重叠的实际育种猪群的参数来评价该方法的选择效果,并和标准QTL选择和常规BLUP选择进行比较。模拟结果表明,优化选择要优于标准QTL选择和常规BLUP选择。群体结构对优化选择的影响比较明显。优化QTL选择和标准QTL选择在世代重叠的群体内比在世代离散的群体内的选择优势更明显,相对于常规BLUP选择,能够获得更大的选择优势。在世代重叠群体内随着2岁公畜遗传贡献的增大,优化选择相对于常规BLUP选择的优势越明显。  相似文献   

4.
This paper addresses the problem of modelling heterogeneous individual characteristics in a population. A flexible unified approach for stochastic parametrization dynamics of the distribution in population data is proposed. To approximate data with multiple observations per individual, models based on Markov processes are constructed. The method can be applied to scalar or multivariate characteristics, and its application to growth and allometry data is considered. Different stochastic versions of known growth and allometry functions are developed, which enable wide applicability. Simple informative growth indices are calculated as the moments of distribution. The three-parameter Gompertz growth model for size-at-age data was reparametrized to a size-increment data model with two parameters. An erratum to this article is available at .  相似文献   

5.
This paper presents a method for constructing a one-sex life table that incorporates age, marriage and parity. The life table is the basis for a generalized population model, with immediate extension to a stable population differentiated by age, marriage and parity status. The method is quite general and could be extended, without major modification, to more complex life tables.Computation of intrinsic rates of increase for a number of populations adjusted for age, for age and parity, for age and marriage, and for age, marriage and parity shows that adjustment for marriage accounts for most of the difference between the age-adjusted rate and the age-, marriage-, and parity-adjusted rate. Adjustment for parity without adjustment for marriage may be misleading.  相似文献   

6.
The problem of jointly estimating the intensity of past selection affecting an allele and the allele's age is formulated in a Bayesian framework. The prior distribution of allele age given its frequency is obtained from existing population genetics theory. The prior distribution of selection intensity is assumed to reflect the fact that positive selection on a new mutant is more likely to be weak than strong. The general approach is illustrated by the development of an importance sampling method applicable to low-frequency alleles. This method can be used either when the haplotypes of closely linked marker loci are known or when the lengths of linked ancestral chromosomal segments can be inferred. The method is illustrated with an application to the A-allele of G6PD in Africa. Because changes in allele frequency and recombination are both intrinsically stochastic, there are limits to the accuracy achievable with any method.  相似文献   

7.
We present a mathematical simplification for the evolutionary dynamics of a heritable trait within a two-sex population. This trait is assumed to control the timing of sex-specific life-history events, such as the age of sexual maturity and end of female fertility, and each sex has a distinct fitness trade-off associated with the trait. We provide a formula for the fitness landscape of the population and show a natural extension of the result to an arbitrary number of heritable traits. Our method can be viewed as a dynamical systems generalisation of the Price equation to include two sexes, age structure and multiple traits. We use this formula to examine the effect of grandmothering, whereby post-fertile females subsidise their daughter’s fertility by provisioning grandchildren. Grandmothering can drive a shift towards increasingly male-biased mating sex ratios due to a post-fertile life stage in females, while male fertility continues to older ages. Our fitness landscapes show a net increase in fitness for both males and females at longer lifespans, and as a result, we find that grandmothering alone provides an evolutionary trajectory to higher longevities.  相似文献   

8.
Korol A  Frenkel Z  Cohen L  Lipkin E  Soller M 《Genetics》2007,176(4):2611-2623
Selective DNA pooling (SDP) is a cost-effective means for an initial scan for linkage between marker and quantitative trait loci (QTL) in suitable populations. The method is based on scoring marker allele frequencies in DNA pools from the tails of the population trait distribution. Various analytical approaches have been proposed for QTL detection using data on multiple families with SDP analysis. This article presents a new experimental procedure, fractioned-pool design (FPD), aimed to increase the reliability of SDP mapping results, by "fractioning" the tails of the population distribution into independent subpools. FPD is a conceptual and structural modification of SDP that allows for the first time the use of permutation tests for QTL detection rather than relying on presumed asymptotic distributions of the test statistics. For situations of family and cross mapping design we propose a spectrum of new tools for QTL mapping in FPD that were previously possible only with individual genotyping. These include: joint analysis of multiple families and multiple markers across a chromosome, even when the marker loci are only partly shared among families; detection of families segregating (heterozygous) for the QTL; estimation of confidence intervals for the QTL position; and analysis of multiple-linked QTL. These new advantages are of special importance for pooling analysis with SNP chips. Combining SNP microarray analysis with DNA pooling can dramatically reduce the cost of screening large numbers of SNPs on large samples, making chip technology readily applicable for genomewide association mapping in humans and farm animals. This extension, however, will require additional, nontrivial, development of FPD analytical tools.  相似文献   

9.
Larix principis-rupprechtii forest is an important vegetation formation and has a large distribution area in Luya Mountain Reserve,China.Spatial pattern analysis on individual trees in different age-classes of Larix principisrupprechtii was made in this paper.Here,we employed the technique of point pattern analysis,which could analyze patterns under all scales along a gradient.It was based on spatial mapped points of individual distribution.The results of this study showed that the densities of the five age-classes varied in the order:age-class 3>age-class 4>age-class 5>age-class 2>age-class 1.Although age-classes 1 and 2 have much fewer individuals than other three age-classes do,the population was stable at present.However,it would be necessary to take some measures for improving population regeneration for a long-time view.The individuals of all age-classes focused on clumping distribution in space;however,their distribution pattern varied with the change of scale.This mainly depended on biological features of Larix principis-rupprechtii and forest environments,but it also meant that the scale was an important factor in controlling spatial distribution pattern of tree individuals.The feature of clumping distribution became more significant with the increase of age.The relationships between individuals in different age-classes were almost all significantly correlated with each other.These associations became more significant within the older age-classes.This suggested that the individuals of different age-classes were interdistributed,by which the population could get benefits in resource utilization.The technique of point pattern analysis is effective and easy to be used in species pattern study.Its results are more closer to the reality,especially for community structure.  相似文献   

10.
1.?The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2.?Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3.?We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4.?This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5.?This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks.  相似文献   

11.
Population-Based Reversible Jump Markov Chain Monte Carlo   总被引:2,自引:0,他引:2  
We present an extension of population-based Markov chain MonteCarlo to the transdimensional case. A major challenge is thatof simulating from high- and transdimensional target measures.In such cases, Markov chain Monte Carlo methods may not adequatelytraverse the support of the target; the simulation results willbe unreliable. We develop population methods to deal with suchproblems, and give a result proving the uniform ergodicity ofthese population algorithms, under mild assumptions. This resultis used to demonstrate the superiority, in terms of convergencerate, of a population transition kernel over a reversible jumpsampler for a Bayesian variable selection problem. We also givean example of a population algorithm for a Bayesian multivariatemixture model with an unknown number of components. This isapplied to gene expression data of 1000 data points in six dimensionsand it is demonstrated that our algorithm outperforms some competingMarkov chain samplers. In this example, we show how to combinethe methods of parallel chains (Geyer, 1991), tempering (Geyer& Thompson, 1995), snooker algorithms (Gilks et al., 1994),constrained sampling and delayed rejection (Green & Mira,2001).  相似文献   

12.
For the analysis of 2 × 3 tables, TOMIZAWA (1993) considered an exact test of uniform association, which is an extension of independence, and then derived a discrete distribution. This paper gives a normal approximation of the discrete distribution and describes that the normalized statistic can test a one-sided hypothesis on the uniform association. Also it points out that the square of the normalized test statistic is equal to the Pearson's chi-squared statistic for testing the uniform association.  相似文献   

13.
This study investigates variation in somatic mutation frequency, as measured by the glycophorin-A (GPA) somatic mutation assay, in relation to polymorphic variation among 435 newborn babies in DNA repair genes XRCC1, XRCC3 and XRCC4 and gender, parental age, social class and smoking habits. The three polymorphisms under investigation were an Arg --> Gln substitution at codon 399 in exon 10 of XRCC1, a Thr --> Met substitution at codon 241 in exon 7 of XRCC3 and an Ile --> Thr substitution at codon 401 in exon 4 of XRCC4. The study population is an extension of that previously analysed for GPA mutations and XRCC1 polymorphisms. A significant difference was seen in the earlier work in the genotype distribution for the XRCC1 Arg399Gln polymorphism between the main population and the small number with extreme values for NN variant frequency and this was maintained in the larger study group (OR 3.20 [95% CI: 1.16, 8.81]) P = 0.043). No such association was seen for XRCC3 or XRCC4 polymorphisms. When adjustments were made for multiple testing, neither N0 nor NN variant frequencies in the main study population were found to be influenced by the polymorphisms in XRCC1, XRCC3, or XRCC4. In addition, neither maternal or paternal smoking, age or social class nor the gender of the offspring were found to affect variant frequencies nor were variant frequencies influenced by any interaction between any of these factors and genotype. It is concluded that the genotypic variation in DNA repair genes examined in this study has no discernable effect on the genesis of the somatic mutations observed at birth.  相似文献   

14.
The consistency of the species abundance distribution across diverse communities has attracted widespread attention. In this paper, I argue that the consistency of pattern arises because diverse ecological mechanisms share a common symmetry with regard to measurement scale. By symmetry, I mean that different ecological processes preserve the same measure of information and lose all other information in the aggregation of various perturbations. I frame these explanations of symmetry, measurement, and aggregation in terms of a recently developed extension to the theory of maximum entropy. I show that the natural measurement scale for the species abundance distribution is log-linear: the information in observations at small population sizes scales logarithmically and, as population size increases, the scaling of information grades from logarithmic to linear. Such log-linear scaling leads naturally to a gamma distribution for species abundance, which matches well with the observed patterns. Much of the variation between samples can be explained by the magnitude at which the measurement scale grades from logarithmic to linear. This measurement approach can be applied to the similar problem of allelic diversity in population genetics and to a wide variety of other patterns in biology.  相似文献   

15.
16.
L Min  R Yang  X Wang  B Wang 《Heredity》2011,106(1):124-133
The dissection of the genetic architecture of quantitative traits, including the number and locations of quantitative trait loci (QTL) and their main and epistatic effects, has been an important topic in current QTL mapping. We extend the Bayesian model selection framework for mapping multiple epistatic QTL affecting continuous traits to dynamic traits in experimental crosses. The extension inherits the efficiency of Bayesian model selection and the flexibility of the Legendre polynomial model fitting to the change in genetic and environmental effects with time. We illustrate the proposed method by simultaneously detecting the main and epistatic QTLs for the growth of leaf age in a doubled-haploid population of rice. The behavior and performance of the method are also shown by computer simulation experiments. The results show that our method can more quickly identify interacting QTLs for dynamic traits in the models with many numbers of genetic effects, enhancing our understanding of genetic architecture for dynamic traits. Our proposed method can be treated as a general form of mapping QTL for continuous quantitative traits, being easier to extend to multiple traits and to a single trait with repeat records.  相似文献   

17.
Optimal control theory is used to produce a general model of life history evolution in a stationary environment. Several disparate trends in current theorizing on life histories are thereby unified. An optimal life history (OLH) is defined as one which maximizes individual fitness (the Malthusian parameter in density-independent populations, the carrying capacity in density-dependent ones). Since the components of fitness depend on the phenotype, the search for an OLH is accomplished in phenotypic space. The optimization is controlled by apportioning the energy obtained at any age between conflicting processes of growth, survival and reproduction. The methods of dynamic optimization which pertain to this problem are reviewed briefly, and its results interpreted biologically. Of these, Pontryagin's method is selected and used to examine some simple models. This method leads one to define a dual variable matched to each phenotypic variable, the prospective value. This provides an indicator of the selective pressures acting at any age on a phenotypic feature to push it towards coincidence with the OLH. This also suggests that at ages in which these dual variables are low (i.e. late ages) there will be greater phenotypic variability around the OLH in any population. The problem of the optimal distribution of reproductive effort over the life history is discussed as well.  相似文献   

18.
等位基因多态性群体遗传结构的多元非线性分析方法   总被引:4,自引:0,他引:4  
长期以来,对于多维基因多态性数据的多元统计分析,如计算遗传距离时昕用的聚类分析、分析群体遗传结构时所用的主成分分析、因子分析和典型相关分析等,一直应用为无约束条件数据而设计的经典多元线性分析方法,并没有注意基因多态性数据的“闭合效应”所带来的问题。从分析基因多态性数据的分布和结构特征入手,文中指出了基因多态性分布具有“闭合数据”的特点,分析了由于“闭合效应”的影响,经典多元线性方法用于群体遗传结构分析昕面临的困难。根据成分数据统计分析的理论和方法,提出了基因多态性群体遗传结构的多元非线性分析基本方法。并以主成分分析为例,通过实例比较和分析了经典线性主成分分析和“对数比”非线性主成分分析的结果,证明“对数比”非线性主成分分析方法是研究基因多态性群体遗传结构的良好方法,具有特异、灵敏等优点,其结果符合群体遗传学规律。  相似文献   

19.
The selection of fossil data to use as calibration age priors in molecular divergence time estimates inherently links neontological methods with paleontological theory. However, few neontological studies have taken into account the possibility of a taphonomic bias in the fossil record when developing approaches to fossil calibration selection. The Sppil-Rongis effect may bias the first appearance of a lineage toward the recent causing most objective calibration selection approaches to erroneously exclude appropriate calibrations or to incorporate multiple calibrations that are too young to accurately represent the divergence times of target lineages. Using turtles as a case study, we develop a Bayesian extension to the fossil selection approach developed by Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibrations points. Am. Nat. 171:726-742) that takes into account this taphonomic bias. Our method has the advantage of identifying calibrations that may bias age estimates to be too recent while incorporating uncertainty in phylogenetic parameter estimates such as tree topology and branch lengths. Additionally, this method is easily adapted to assess the consistency of potential calibrations to any one calibration in the candidate pool.  相似文献   

20.
Summary A continuous time selection model is formulated for a diploid monoecious population with multiple alleles at each of an arbitrary number of loci, incorporating differential fertility and mortality as well as arbitrary mating and age structure. The model is simplified in the case of age-independence and for the case of a stable age distribution. The age-independent model is examined in detail for the special case of multiple alleles at each of two loci. This model is analyzed under the assumptions of random mating and additive fertilities, with close attention given to the behavior of the system with respect to Hardy-Weinberg proportions and linkage equilibrium.M. M. was supported by a U.S. Public Health Service training grant (Grant No. GM780).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号