首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Trees allocate a high proportion of assimilated carbon belowground, but the partitioning of that C among ecosystem components is poorly understood thereby limiting our ability to predict responses of forest C dynamics to global change drivers.

Methods

We labeled sugar maple saplings in natural forest with a pulse of photosynthetic 13C in late summer and traced the pulse over the following 3 years. We quantified the fate of belowground carbon by measuring 13C enrichment of roots, rhizosphere soil, soil respiration, soil aggregates and microbial biomass.

Results

The pulse of 13C contributed strongly to root and rhizosphere respiration for over a year, and respiration comprised about 75 % of total belowground C allocation (TBCA) in the first year. We estimate that rhizosphere carbon flux (RCF) during the dormant season comprises at least 6 % of TBCA. After 3 years, 3.8 % of the C allocated belowground was recovered in soil organic matter, mostly in water-stable aggregates.

Conclusions

A pulse of carbon allocated belowground in temperate forest supplies root respiration, root growth and RCF throughout the following year and a small proportion becomes stabilized in soil aggregates.  相似文献   

2.
The effects of light and tree size on the root architecture and mycorrhiza of yellow birch (Betula alleghaniensis Britton) and sugar maple (Acer saccharum Marsh) growing in the understory of deciduous forests in southern Québec, Canada were studied. At the study site, small (<50 m2), medium (101–200 m2) and large (201–500 m2) canopy gaps were investigated. From within these gaps, 17 yellow birch and 23 sugar maple saplings from 40 to 600 cm in height were sampled. In both species, root biomass and morphological traits were strongly correlated with tree size, but only weakly with light availability. Increased root biomass was primarily allocated to coarse roots and secondarily to fine roots. Yellow birch roots were longer, had a larger area, more endings and branches and grew more rapidly than sugar maple roots. Mycorrhizal colonization increased with available light and declined with tree age in sugar maple and was positively associated with tree size in yellow birch. The study demonstrates that tree size is a very important determinant of how belowground systems acclimate to understory conditions.  相似文献   

3.
We investigated in the field the carbon (C) transfer between sugar maple (Acer saccharum) saplings and the spring ephemeral Erythronium americanum via the mycelium of arbuscular mycorrhizal (AM) fungi. Sugar maple saplings and E. americanum plants were planted together in pots placed in the ground of a maple forest in 1999. Ectomycorrhizal yellow birches (Betula alleghaniensis) were added as control plants. In spring 2000, during leaf expansion of sugar maple saplings, the leaves of E. americanum were labelled with 14CO2. Seven days after labelling, radioactivity was detected in leaves, stem and roots of sugar maples. Specific radioactivity in sugar maples was 13-fold higher than in yellow birches revealing the occurrence of a direct transfer of 14C between the AM plants. The quantity of 14C transferred to sugar maple saplings was negatively correlated with the percentage of 14C allocated to the storage organ of E. americanum. A second labelling was performed in autumn 2000 on sugar maple leaves during annual growth of E. americanum roots. Radioactivity was detected in 7 of 22 E. americanum root systems and absent in yellow birches. These results suggest that AM fungi connecting different understorey species can act as reciprocal C transfer bridges between plant species in relation with the phenology of the plants involved.  相似文献   

4.
The allocation of carbon to shoots, roots, soil and rhizosphere respiration in barrel medic (Medicago truncatulaGaertn.) before and after defoliation was determined by growing plants in pots in a labelled atmosphere in a growth cabinet. Plants were grown in a 14CO2-labelled atmosphere for 30 days, defoliated and then grown in a 13CO2-labelled atmosphere for 19 days. Allocation of 14C-labelled C to shoots, roots, soil and rhizosphere respiration was determined before defoliation and the allocation of 14C and 13C was determined for the period after defoliation. Before defoliation, 38.4% of assimilated C was allocated below ground, whereas after defoliation it was 19.9%. Over the entire length of the experiment, the proportion of net assimilated carbon allocated below ground was 30.3%. Of this, 46% was found in the roots, 22% in the soil and 32% was recovered as rhizosphere respiration. There was no net translocation of assimilate from roots to new shoot tissue after defoliation, indicating that all new shoot growth arose from above-ground stores and newly assimilated carbon. The rate of rhizosphere respiration decreased immediately after defoliation, but after 8 days, was at comparable levels to those before defoliation. It was not until 14 days after defoliation that the amount of respiration from newly assimilated C (13C) exceeded that of C assimilated before defoliation (14C). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Tree-ring characteristics in four species were examined to address whether co-occurring mature trees of different successional status respond differently to drought, and whether saplings of these species have a greater response to drought than mature trees. We examined saplings and mature trees of paper birch, yellow birch, red maple and sugar maple, which varied in successional status (shade-tolerance) and co-occurred at Harvard Forest, Petersham, Mass., USA. Three drought events in 1964–1966, 1981 and 1995 were identified using climate data. For mature trees, there was no significant interspecific difference in relative changes in ring-width index (RWI) during the 1964–1966 and 1995 drought events. However, the interspecific difference was significant in the 1981 drought event. Response function analysis for mature trees showed that the radial growth of sugar maple was mainly controlled by spring and summer precipitation, red maple by spring and summer precipitation and temperature, yellow birch by winter and summer precipitation, and spring and summer temperature, and paper birch by spring and summer precipitation and spring temperature. Saplings of sugar maple and yellow birch, but not red maple and paper birch, showed significant positive correlations between RWI and annual total precipitation. In the 1995 drought event, saplings and mature trees of red maple and paper birch differed significantly in drought responses, but this was not true in sugar maple and yellow birch. Our results do not support a generally greater response in saplings than in mature trees, nor an early- versus late successional difference in drought responses.  相似文献   

6.
Norway maple (Acer platanoidesis) is invasive in a natural stand in suburban Ithaca, NY. To determine the understory pattern and consequences of a Norway maple invasion, I compared density and species richness under Norway maples and sugar maples (Acer saccharum). Mean sapling density was significantly lower (P<0.0027) under Norway maples (3.64/100 m2±1.6 SE) than under sugar maples (19.4/100 m2±4.4 SE). Mean sapling species richness was significantly lower (P<0.0018) under Norway maples (0.7/32 m2±0.18 SE) than under sugar maples (2.6/32 m2±0.48 SE). Likewise, Norway maple regeneration is more frequent under sugar maples than sugar maple regeneration: 57% of sugar maple plots had Norway maple saplings while 0% of Norway maple plots had sugar maple saplings. Two significant plot effects were found for presence–absence: Norway maple saplings grow under Norway maples with a significantly lower frequency (P<0.03) than under sugar maples; sugar maple saplings grow under Norway maples with a significantly lower frequency (P<0.000) than under sugar maples. Across the site, Norway maple saplings were the most abundant (29 saplings for 480 m2). The success of Norway maple regeneration and the reductions in total stem density beneath Norway maples is most likely the result of its strong competitive abilities, notably its high shade tolerance and abundant seed crops.  相似文献   

7.
Carbon dioxide is released from the soil to the atmosphere in heterotrophic respiration when the dead organic matter is used for substrates for soil micro-organisms and soil animals. Respiration of roots and mycorrhiza is another major source of carbon dioxide in soil CO2 efflux. The partitioning of these two fluxes is essential for understanding the carbon balance of forest ecosystems and for modelling the carbon cycle within these ecosystems. In this study, we determined the carbon balance of three common tree species in boreal forest zone, Scots pine, Norway spruce, and Silver birch with gas exchange measurements conducted in laboratory in controlled temperature and light conditions. We also studied the allocation pattern of assimilated carbon with 14C pulse labelling experiment. The photosynthetic light responses of the tree species were substantially different. The maximum photosynthetic capacity (P max) was 2.21 μg CO2 s−1 g−1 in Scots pine, 1.22 μg CO2 s−1 g−1 in Norway spruce and 3.01 μg CO2 s−1 g−1 in Silver birch seedlings. According to the pulse labelling experiments, 43–75% of the assimilated carbon remained in the aboveground parts of the seedlings. The amount of carbon allocated to root and rhizosphere respiration was about 9–26%, and the amount of carbon allocated to root and ectomycorrhizal biomass about 13–21% of the total assimilated CO2. The 14CO2 pulse reached the root system within few hours after the labelling and most of the pulse had passed the root system after 48 h. The transport rate of carbon from shoot to roots was fastest in Silver birch seedlings.  相似文献   

8.
The exudation of carbon (C) by tree roots stimulates microbial activity and the production of extracellular enzymes in the rhizosphere. Here, we investigated whether the strength of rhizosphere processes differed between temperate forest trees that vary in soil organic matter (SOM) chemistry and associate with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. We measured rates of root exudation, microbial and extracellular enzyme activity, and nitrogen (N) availability in samples of rhizosphere and bulk soil influenced by four temperate forest tree species (i.e., to estimate a rhizosphere effect). Although not significantly different between species, root exudation ranged from 0.36 to 1.10 g C m?2 day?1, representing a small but important transfer of C to rhizosphere microbes. The magnitude of the rhizosphere effects could not be easily characterized by mycorrhizal associations or SOM chemistry. Ash had the lowest rhizosphere effects and beech had the highest rhizosphere effects, representing one AM and one ECM species, respectively. Hemlock and sugar maple had equivalent rhizosphere effects on enzyme activity. However, the form of N produced in the rhizosphere varied with mycorrhizal association. Enhanced enzyme activity primarily increased amino acid availability in ECM rhizospheres and increased inorganic N availability in AM rhizospheres. These results show that the exudation of C by roots can enhance extracellular enzyme activity and soil-N cycling. This work suggests that global changes that alter belowground C allocation have the potential to impact the form and amount of N to support primary production in ECM and AM stands.  相似文献   

9.
The distribution of net assimilated C in barley (Hordeum vulgare L.) grown at two N-levels was determined in a growth chamber. The N-fertilization involved 0 and 3.61 mol N g-1 dry soil. After growth for seven weeks in an atmosphere with continuously 14C-labelled CO2, 14C was determined in shoots, roots, rhizosphere respiration and soil. At the low N-level, 32% of the net assimilated 14C was translocated below ground, whereas at the high N-level 27% was translocated below ground. The release of C from roots (root respiration, microbial respiration originating from decomposition of 14C-labelled root material and 14C remaining in soil) was greater with no N-supply (19% of net assimilated 14C) than in the treatment with N-supply (15%). Thus, the effect of N-supply on both translocation of assimilated 14C below ground and the release of 14C from growing roots was relatively small.  相似文献   

10.
Total 66 small (<50m(2)), 24 medium (101-200m(2)) and 36 large (201-500m(2)) canopy gaps at the three sites of yellow birch (Betula alleghaniensis Britton) and sugar maple (Acer saccharum Marsh) forests were established in southern Québec, Canada. Half of the gaps were covered by 8x8m(2) shading cloths to mimic a closed canopy. From these gaps, 46 understory yellow birch and 46 sugar maple saplings with different tree ages and sizes were sampled. Single- and multi-variable linear and nonlinear models of root biomass and traits (root surface area, volume, length and endings) were developed and examined. Lorentzian model as a multi-variable nonlinear model was firstly applied to the simulations using both base diameter and height, and performed the best fit to total root biomass in both species with the highest correlation coefficients (R(2)=0.96 and 0.98) and smallest root mean squared deviations (RMSD=7.85 and 7.02) among all the examined models. The model also accurately simulated small fine root (2.0mm in diameter), coarse fine root (>2.0-5.0mm) and coarse root (>5.0mm) biomass (R(2)=0.87-0.99; RMSD=2.24-6.41), and the root traits (R(2)=0.71-0.99; RMSD=0.19-19.38). The study showed yellow birch roots were longer, larger, had more endings (tips) and grew faster than sugar maple roots. The root traits were largely distributed to small fine roots, sharply decreased from small fine roots to coarse fine roots, the fewest in coarse roots except for root volume. When trees were large, coarse root biomass increased more rapidly than fine root biomass, but vise versa when the trees were small.  相似文献   

11.
Seedlings of yellow birch (Betula alleghaniensis Britton) and sugar maple (Acer saccharum Marsh.) were grown for 2 years in mono-culture and mixed-culture and at three fertility levels. Following the second growing season, senescent leaves were analysed for N concentration, acid hydrolysable substances (AHS), and nonhydrolysable remains (NHR). A litter sub-sample was then inoculated with indigenous soil microflora, incubated 14 weeks, and mass loss was measured. Litter-N was significantly higher at medium than at poor fertility, as well as in yellow birch than in sugar maple litter. The species effect on litter-N increased with increasing fertility. At medium fertility, litter-N of sugar maple litter was lower in mixed-culture than in mono-culture. AHS, NHR as well the NHR/N ratio were significantly higher in yellow birch than in sugar maple litter. At medium fertility, the NHR/N ratio of sugar maple litter was significantly lower in mono-culture than in mixed-culture. Mass loss was significantly greater at medium and rich fertility than at poor fertility, and in yellow birch than in sugar maple litter. At poor fertility, mixed-litter decomposed at a rate comparable to yellow birch, whereas at medium and rich fertility, mixed-litter decomposed at a rate comparable to sugar maple. There was a significant positive relationship between litter-N and mass loss. A similar positive relationship between NHR and mass loss was presumed to be a species effect on decomposition. Results support the hypothesis that species × fertility and species × mixture interactions can be important determinants of litter quality and, by implication, of site nutrient cycling.  相似文献   

12.
 This study examined select, naturally-occurring tree mycorrhizae for differences related to efficiency of organic phosphorus hydrolysis in forest soils. We investigated the activity of several phosphatases and root respiration in field-collected ectomycorrhizae of American beech and gray birch and VAM of red maple. Root materials were collected in the early and late growing season from a common soil type. American beech occurred in a late-successional stand, whereas gray birch and red maple grew in a mid-successional stand. All of the root types examined had phosphatase activities with p-nitrophenyl phosphate, bis-p-nitrophenyl phosphate and phytic acid and thus the potential to mineralize monoester and diester forms of organic phosphorus. Rates of hydrolysis at pH 5.0 were greatest with p-nitrophenyl phosphate. Although enzyme activity varied with season and ectomycorrhizal morphotype, VAM roots of red maple consistently had the lowest enzyme activities on a length and dry weight basis. Comparison of 32P uptake from inositol phosphate by gray birch and red maple roots suggested that phosphomonoesterase activity was linked to P uptake from this source. Differences between species in oxygen consumption rates were less pronounced than those observed for enzymatic activities, suggesting similar short-term energy demands by the root types examined. The quantitative differences observed between plants growing on a common soil potentially relate to differences in host demand or reflect differences in basic morphology and/or physiology of associated mycobionts. Further study is necessary to understand the importance of these enzymes in the functional ecology of mycorrhizal fungi. Accepted: 20 December 1996  相似文献   

13.
Limitations in available techniques to separate autotrophic (root) and soil heterotrophic respiration have hampered the understanding of forest C cycling. The former is here defined as respiration by roots, their associated mycorrhizal fungi and other micro‐organisms in the rhizosphere directly dependent on labile C compounds leaked from roots. In order to separate the autotrophic and heterotrophic components of soil respiration, all Scots pine trees in 900 m2 plots were girdled to instantaneously terminate the supply of current photosynthates from the tree canopy to roots. Högberg et al. (Nature 411, 789–792, 2001) reported that autotrophic activity contributed up to 56% of total soil respiration during the first summer of this experiment. They also found that mobilization of stored starch (and likely also sugars) in roots after girdling caused an increased apparent heterotrophic respiration on girdled plots. Herein a transient increase in the δ13C of soil CO2 efflux after girdling, thought to be due to decomposition of 13C‐enriched ectomycorrhizal mycelium and root starch and sugar reserves, is reported. In the second year after girdling, when starch reserves of girdled tree roots were exhausted, calculated root respiration increased up to 65% of total soil CO2 efflux. It is suggested that this estimate of its contribution to soil respiration is more precise than the previous based on one year of observation. Heterotrophic respiration declined in response to a 20‐day‐long 6 °C decline in soil temperature during the second summer, whereas root respiration did not decline. This did not support the idea that root respiration should be more sensitive to variations in soil temperature. It is suggested that above‐ground photosynthetic activity and allocation patterns of recent photosynthates to roots should be considered in models of responses of forest C balances to global climate change.  相似文献   

14.
Reductions in snow cover undera warmer climate may cause soil freezing eventsto become more common in northern temperateecosystems. In this experiment, snow cover wasmanipulated to simulate the late development ofsnowpack and to induce soil freezing. Thismanipulation was used to examine the effects ofsoil freezing disturbance on soil solutionnitrogen (N), phosphorus (P), and carbon (C)chemistry in four experimental stands (twosugar maple and two yellow birch) at theHubbard Brook Experimental Forest (HBEF) in theWhite Mountains of New Hampshire. Soilfreezing enhanced soil solution Nconcentrations and transport from the forestfloor. Nitrate (NO3 ) was thedominant N species mobilized in the forestfloor of sugar maple stands after soilfreezing, while ammonium (NH4 +) anddissolved organic nitrogen (DON) were thedominant forms of N leaching from the forestfloor of treated yellow birch stands. Rates ofN leaching at stands subjected to soil freezingranged from 490 to 4,600 mol ha–1yr–1, significant in comparison to wet Ndeposition (530 mol ha–1 yr–1) andstream NO3 export (25 mol ha–1yr–1) in this northern forest ecosystem. Soil solution fluxes of Pi from the forestfloor of sugar maple stands after soil freezingranged from 15 to 32 mol ha–1 yr–1;this elevated mobilization of Pi coincidedwith heightened NO3 leaching. Elevated leaching of Pi from the forestfloor was coupled with enhanced retention ofPi in the mineral soil Bs horizon. Thequantities of Pi mobilized from the forestfloor were significant relative to theavailable P pool (22 mol ha–1) as well asnet P mineralization rates in the forest floor(180 mol ha–1 yr–1). Increased fineroot mortality was likely an important sourceof mobile N and Pi from the forest floor,but other factors (decreased N and P uptake byroots and increased physical disruption of soilaggregates) may also have contributed to theenhanced leaching of nutrients. Microbialmortality did not contribute to the acceleratedN and P leaching after soil freezing. Resultssuggest that soil freezing events may increaserates of N and P loss, with potential effectson soil N and P availability, ecosystemproductivity, as well as surface wateracidification and eutrophication.  相似文献   

15.
Fertilizer-induced reductions in CO(2) flux from soil ((F)CO(2)) in forests have previously been attributed to decreased carbon allocation to roots, and decreased decomposition as a result of nitrogen suppression of fungal activity. Here, we present evidence that decreased microbial respiration in the rhizosphere may also contribute to (F)CO(2) reductions in fertilized forest soils. Fertilization reduced (F)CO(2) by 16-19% in 65-yr-old plantations of northern red oak (Quercus rubra) and sugar maple (Acer saccharum), and in a natural 85-yr-old yellow birch (Betula allegheniensis) stand. In oak plots, fertilization had no effects on fine root biomass but reduced mycorrhizal colonization by 18% and microbial respiration by 43%. In maple plots, fertilization reduced root biomass, mycorrhizal colonization and microbial respiration by 22, 16 and 46%, respectively. In birch plots, fertilization reduced microbial respiration by 36%, but had variable effects on root biomass and mycorrhizal colonization. In plots of all three species, fertilization effects on microbial respiration were greater in rhizosphere than in bulk soil, possibly as a result of decreased rhizosphere carbon flux from these species in fertile soils. Because rhizosphere processes may influence nutrient availability and carbon storage in forest ecosystems, future research is needed to better quantify rhizo-microbial contributions to (F)CO(2).  相似文献   

16.
Seasonal trends in five traits of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula allegheniensis Britt.) leaves thought to influence feeding by herbivores were measured from 17 May through 19 September, 1979. Total nitrogen and water contents declined and toughness increased through the growth season. These seasonal changes were more pronounced in sugar maple than in yellow birch. Total polyphenol contents and tanning coefficients of leaf extracts from both species reached a season high by the end of May and changed very little after that date; these patterns differ from those reported by several other investigators. Sugar maple leaf extracts exhibited much higher tanning coefficients than did those of yellow birch, a finding which is consistent with current plant defense theory. Significant differences in total polyphenol content and tanning coefficients were found between individual trees in yellow birch, but not sugar maple. The relationship between successional status, leaf quality traits, and variability in these traits in forest trees is discussed.  相似文献   

17.
Distribution of net assimilated C in meadow fescue (Fectuca pratensi L.) was followed before and after cutting of the shoots. Plants were continuously labelled in a growth chamber with 14C-labelled CO2 in the atmosphere from seedling to cutting and with 13C-labelled CO2 in the atmosphere during regrowth after the cutting. Labelled C, both 14C and 13C, was determined at the end of the two growth periods in shoots, crowns, roots, soil and rhizosphere respiration. Distribution of net assimilated C followed almost the same pattern at the end of the two growth periods, i.e. at the end of the 14C- and the 13C-labelling periods. Shoots retained 71–73% of net assimilated C while 9% was detected in the roots and 11–14% was released from the roots, determined as labelled C in soil and as rhizosphere respiration. At the end of the 2nd growth period, after cutting and regrowth, 21% of the residual plant 14C at cutting (14C in crowns and roots) was found in the new shoot biomass. A minor part of the residual plant 14C, 12%, was lost from the plants. The decreases in 14C in crowns and roots during the regrowth period suggest that 14C in both crowns and roots was translocated to new shoot tissue. Approximately half of the total root C at the end of the regrowth period after cutting was 13C-labelled C and thus represents new root growth. Root death after cutting could not be determined in this experiment, since the decline in root 14C during the regrowth period may also be assigned to root respiration, root exudation and translocation to the shoots. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

18.
Climate change is expected to lead to upslope shifts in tree species distributions, but the evidence is mixed partly due to land‐use effects and individualistic species responses to climate. We examined how individual tree species demography varies along elevational climatic gradients across four states in the northeastern United States to determine whether species elevational distributions and their potential upslope (or downslope) shifts were controlled by climate, land‐use legacies (past logging), or soils. We characterized tree demography, microclimate, land‐use legacies, and soils at 83 sites stratified by elevation (~500 to ~1200 m above sea level) across 12 mountains containing the transition from northern hardwood to spruce‐fir forests. We modeled elevational distributions of tree species saplings and adults using logistic regression to test whether sapling distributions suggest ongoing species range expansion upslope (or contraction downslope) relative to adults, and we used linear mixed models to determine the extent to which climate, land use, and soil variables explain these distributions. Tree demography varied with elevation by species, suggesting a potential upslope shift only for American beech, downslope shifts for red spruce (more so in cool regions) and sugar maple, and no change with elevation for balsam fir. While soils had relatively minor effects, climate was the dominant predictor for most species and more so for saplings than adults of red spruce, sugar maple, yellow birch, cordate birch, and striped maple. On the other hand, logging legacies were positively associated with American beech, sugar maple, and yellow birch, and negatively with red spruce and balsam fir – generally more so for adults than saplings. All species exhibited individualistic rather than synchronous demographic responses to climate and land use, and the return of red spruce to lower elevations where past logging originally benefited northern hardwood species indicates that land use may mask species range shifts caused by changing climate.  相似文献   

19.
We compared the Q10 relationship for root‐derived respiration (including respiration due to the root, external mycorrhizal mycelium and rhizosphere microorganisms) with that of mainly external ectomycorrhizal mycelium and that of bulk soil microorganisms without any roots present. This was studied in a microcosm consisting of an ectomycorrhizal Pinus muricata seedling growing in a sandy soil, and where roots were allow to colonize one soil compartment, mycorrhizal mycelium another compartment, and the last compartment consisted of root‐ and mycorrhiza‐free soil. The respiration rate in the bulk soil compartment was 30 times lower than in the root compartment, while that in the mycorrhizal compartment was six times lower. There were no differences in Q10 (for 5–15°C) between the different compartments, indicating that there were no differences in the temperature relationship between root‐associated and non‐root‐associated organisms. Thus, there are no indications that different Q10 values should be used for different soil organism, bulk soil or rhizosphere‐associated microorganisms when modelling the effects of global climate change.  相似文献   

20.
CO2 efflux from soil depends on the availability of organic substances respired by roots and microorganisms. Therefore, photosynthetic activity supplying carbohydrates from leaves to roots and rhizosphere is a key driver of soil CO2. This fact has been overlooked in most soil CO2 studies because temperature variations are highly correlated with solar radiation and mask the direct effect of photosynthesis on substrate availability in soil. This review highlights the importance of photosynthesis for rhizosphere processes and evaluates the time lag between carbon (C) assimilation and CO2 release from soil. Mechanisms and processes contributing to the lag were evaluated. We compared the advantages and shortcomings of four main approaches used to estimate this time lag: (1) interruption of assimilate flow from leaves into the roots and rhizosphere, and analysis of the decrease of CO2 efflux from soil, (2) time series analysis (TSA) of CO2 fluxes from soil and photosynthesis proxies, (3) analysis of natural δ13C variation in CO2 with photosynthesis‐related parameters or δ13C in the phloem and leaves, and (4) pulse labeling of plants in artificial 14CO2 or 13CO2 atmosphere with subsequent tracing of 14C or 13C in CO2 efflux from soil. We concluded that pulse labeling is the most advantageous approach. It allows clear evaluation not only of the time lag, but also of the label dynamics in soil CO2, and helps estimate the mean residence time of recently assimilated C in various above‐ and belowground C pools. The impossibility of tracing the phloem pressure–concentration waves by labeling approach may be overcome by its combination with approaches based on TSA of CO2 fluxes and its δ13C with photosynthesis proxies. Numerous studies showed that the time lag for grasses is about 12.5±7.5 (SD) h. The time lag for mature trees was much longer (~4–5 days). Tree height slightly affected the lag, with increasing delay of 0.1 day m?1. By evaluating bottle‐neck processes responsible for the time lag, we conclude that, for trees, the transport of assimilates in phloem is the rate‐limiting step. However, it was not possible to predict the lag based on the phloem transport rates reported in the literature. We conclude that studies of CO2 fluxes from soil, especially in ecosystems with a high contribution of root‐derived CO2, should consider photosynthesis as one of the main drivers of C fluxes. This calls for incorporating photosynthesis in soil C turnover models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号