首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Calcium and cadmium binding to troponin C. Evidence for cooperativity   总被引:1,自引:0,他引:1  
Proton NMR is used to compare the structural changes induced in bovine cardiac troponin C on binding of cadmium and calcium ions. The same spectral changes are observed for both ion species. The rate of the conformational changes associated with cadmium binding to the two high-affinity sites is slow, that associated with cadmium ions binding to the low-affinity site is high. 113Cd-NMR spectra of cardiac troponin C feature two signals interpreted as due to cadmium ions bound to the strong sites. Strong arguments are given in favour of cooperativity in binding of the first two cadmium or calcium ions to cardiac and skeletal muscle troponin C.  相似文献   

2.
The cardiac-specific N-terminus of cardiac troponin I (cTnI) is known to modulate the activity of troponin upon phosphorylation with protein kinase A (PKA) by decreasing its Ca2+ affinity and increasing the relaxation rate of the thin filament. The molecular details of this modulation have not been elaborated to date. We have established that the N-terminus and the switch region of cTnI bind to cNTnC [the N-domain of cardiac troponin C (cTnC)] simultaneously and that the PKA signal is transferred via the cTnI N-terminus modulating the cNTnC affinity toward cTnI147-163 but not toward Ca2+. The Kd of cNTnC for cTnI147-163 was found to be 600 μM in the presence of cTnI1-29 and 370 μM in the presence of cTn11-29PP, which can explain the difference in muscle relaxation rates upon the phosphorylation with PKA in experiments with cardiac fibers. In the light of newly found mutations in cNTnC that are associated with cardiomyopathies, the important role played by the cTnI N-terminus in the development of heart disorders emerges. The mutants studied, L29Q (the N-domain of cTnC containing mutation L29Q) and E59D/D75Y (the N-domain of cTnC containing mutation E59D/D75Y), demonstrated unchanged Ca2+ affinity per se and in complex with the cTnI N-terminus (cTnI1-29 and cTnI1-29PP). The affinity of L29Q and E59D/D75Y toward cTnI147-163 was significantly perturbed, both alone and in complex with cTnI1-29 and cTnI1-29PP, which is likely to be responsible for the development of malfunctions.  相似文献   

3.
EF手图像超家族成员——肌钙蛋白C的研究进展   总被引:2,自引:0,他引:2  
EF手图像超家族蛋白泛指一类含有由螺旋区-泡区-螺旋区构成的EF手图像模体的蛋白。这类蛋白通常都具有金属离子结合能力或者形成二聚体的能力。肌钙蛋白C是一种EF手图像蛋白,它具有钙离子结合能力,可以与肌钙蛋白I、肌钙蛋白T形成复合物调节肌肉收缩。目前,国内外对肌钙蛋白C的研究多数集中在脊椎动物上,而对无脊椎动物的研究较少。主要从EF手图像超家族的特性及其家族成员——肌钙蛋白C的分类、结构及功能等方面进行了阐述,并结合笔者自身的研究方向,简要介绍了家蚕肌钙蛋白C的研究情况及前景。  相似文献   

4.
Calcium sensor proteins translate transient increases in intracellular calcium levels into metabolic or mechanical responses, by undergoing dramatic conformational changes upon Ca2+ binding. A detailed analysis of the calcium binding-induced conformational changes in the representative calcium sensors calmodulin (CaM) and troponin C was performed to obtain insights into the underlying molecular basis for their response to the binding of calcium. Distance difference matrices, analysis of interresidue contacts, comparisons of interhelical angles, and inspection of structures using molecular graphics were used to make unbiased comparisons of the various structures. The calcium-induced conformational changes in these proteins are dominated by reorganization of the packing of the four helices within each domain. Comparison of the closed and open conformations confirms that calcium binding causes opening within each of the EF-hands. A secondary analysis of the conformation of the C-terminal domain of CaM (CaM-C) clearly shows that CaM-C occupies a closed conformation in the absence of calcium that is distinct from the semi-open conformation observed in the C-terminal EF-hand domains of myosin light chains. These studies provide insight into the structural basis for these changes and into the differential response to calcium binding of various members of the EF-hand calcium-binding protein family. Factors contributing to the stability of the Ca2+-loaded open conformation are discussed, including a new hypothesis that critical hydrophobic interactions stabilize the open conformation in Ca2+ sensors, but are absent in "non-sensor" proteins that remain closed upon Ca2+ binding. A role for methionine residues in stabilizing the open conformation is also proposed.  相似文献   

5.
6.
Akazara scallop (Chlamys nipponensis akazara) troponin C (TnC) of striated adductor muscle binds only one Ca2+ ion at the C-terminal EF-hand motif (Site IV), but it works as the Ca2+-dependent regulator in adductor muscle contraction. In addition, the scallop troponin (Tn) has been thought to regulate muscle contraction via activating mechanisms that involve the region spanning from the TnC C-lobe (C-lobe) binding site to the inhibitory region of the TnI, and no alternative binding of the TnI C-terminal region to TnC because of no similarity between second TnC-binding regions of vertebrate and the scallop TnIs. To clarify the Ca2+-regulatory mechanism of muscle contraction by scallop Tn, we have analyzed the Ca2+-binding properties of the complex of TnC C-lobe and TnI peptide, and their interaction using isothermal titration microcalorimetry, nuclear magnetic resonance, circular dichroism, and gel filtration chromatography. The results showed that single Ca2+-binding to the Site IV leads to a structural transition not only in Site IV but also Site III through the structural network in the C-lobe of scallop TnC. We therefore assumed that the effect of Ca2+-binding must lead to a change in the interaction mode between the C-lobe of TnC and the TnI peptide. The change should be the first event of the transmission of Ca2+ signal to TnI in Tn ternary complex.  相似文献   

7.
Visinin-like protein-1 (VILIP-1), a myristoylated calcium sensor protein with three EF-hand motifs, modulates adenylyl cyclase activity. It translocates to membranes when a postulated "calcium-myristoyl switch" is triggered by calcium-binding to expose its sequestered myristoyl moiety. We investigated the contributions of the EF-hand motifs to the translocation of VILIP-1 to membranes and to the modulation of adenylyl cyclase activity. Mutation of residues crucial for binding calcium within each one of the EF-hand motifs indicated that they all contributed to binding calcium. Simultaneous mutations of all of the three EF-hand motifs completely abolished VILIP-1's ability to bind calcium, attenuated but did not eliminate its modulation of adenylyl cyclase activity, and abolished its calcium-dependence for association with cellular membranes. These results show that the calcium-binding EF-hand motifs of VILIP-1 do not have an essential role in modulating adenylyl cyclase activity but instead have a structural role in activating the "calcium-myristoyl switch" of VILIP-1.  相似文献   

8.
Calmodulin (CaM) is a 16.8-kDa calcium-binding protein involved in calcium-signal transduction. It is the canonical member of the EF-hand family of proteins, which are characterized by a helix-loop-helix calcium-binding motif. CaM is composed of N- and C-terminal globular domains (N-CaM and C-CaM), and within each domain there are two EF-hand motifs. Upon binding calcium, CaM undergoes a significant, global conformational change involving reorientation of the four helix bundles in each of its two domains. This conformational change upon ion binding is a key component of the signal transduction and regulatory roles of CaM, yet the precise nature of this transition is still unclear. Here, we present a 1.3-Å structure of zinc-bound N-terminal calmodulin (N-CaM) solved by single-wavelength anomalous diffraction phasing of a selenomethionyl N-CaM. Our zinc-bound N-CaM structure differs from previously reported CaM structures and resembles calcium-free apo-calmodulin (apo-CaM), despite the zinc binding to both EF-hand motifs. Structural comparison with calcium-free apo-CaM, calcium-loaded CaM, and a cross-linked calcium-loaded CaM suggests that our zinc-bound N-CaM reveals an intermediate step in the initiation of metal ion binding at the first EF-hand motif. Our data also suggest that metal ion coordination by two key residues in the first metal-binding site represents an initial step in the conformational transition induced by metal binding. This is followed by reordering of the N-terminal region of the helix exiting from this first binding loop. This conformational switch should be incorporated into models of either stepwise conformational transition or flexible, dynamic energetic state sampling-based transition.  相似文献   

9.
The unique biophysical properties of tryptophan residues have been exploited for decades to monitor protein structure and dynamics using a variety of spectroscopic techniques, such as fluorescence and nuclear magnetic resonance (NMR). We recently designed a tryptophan mutant in the regulatory N‐domain of cardiac troponin C (F77W‐cNTnC) to study the domain orientation of troponin C in muscle fibers using solid‐state NMR. In our previous study, we determined the NMR structure of calcium‐saturated mutant F77W‐V82A‐cNTnC in the presence of 19% 2,2,2‐trifluoroethanol (TFE). TFE is a widely used cosolvent in the biophysical characterization of the solution structures of peptides and proteins. It is generally assumed that the structures are unchanged in the presence of cosolvents at relatively low concentrations, and this has been verified for TFE at the level of the overall secondary and tertiary structure for several calcium regulatory proteins. Here, we present the NMR solution structure of the calcium saturated F77W‐cNTnC in presence of its biological binding partner troponin I peptide (cTnI144–163) and in the absence of TFE. We have also characterized a panel of six F77W‐cNTnC structures in the presence and absence TFE, cTnI144–163, and the extra mutation V82A, and used 19F NMR to characterize the effect of TFE on the F77(5fW) analog. Our results show that although TFE did not perturb the overall protein structure, TFE did induce a change in the orientation of the indole ring of the buried tryptophan side chain from the anticipated position based upon homology with other proteins, highlighting the potential dangers of the use of cosolvents.  相似文献   

10.
We have cloned and characterized the troponin C gene, pat-10 of the nematode Caenorhabditis elegans. At the amino acid level nematode troponin C is most similar to troponin C of Drosophila (45% identity) and cardiac troponin C of vertebrates. Expression studies demonstrate that this troponin is expressed in body wall muscle throughout the life of the animal. Later, vulval muscles and anal muscles also express this troponin C isoform. The structural gene for this troponin is pat-10 and mutations in this gene lead to animals that arrest as twofold paralyzed embryos late in development. We have sequenced two of the mutations in pat-10 and both had identical two mutations in the gene; one changes D64 to N and the other changes W153 to a termination site. The missense alteration affects a calcium-binding site and eliminates calcium binding, whereas the second mutation eliminates binding to troponin I. These combined biochemical and in vivo studies of mutant animals demonstrate that this troponin is essential for proper muscle function during development.  相似文献   

11.
The growing database of three-dimensional structures of EF-hand calcium-binding proteins is revealing a previously unrecognized variability in the coformations and organizations of EF-hand binding motifs. The structures of twelve different EF-hand proteins for which coordinates are publicly available are discussed and related to their respective biological and biophysical properties. The classical picture of calcium sensors and calcium signal modulators is presented, along with variants on the basic theme and new structural paradigms.© Kluwer Academic Publishers  相似文献   

12.
McKay RT  Saltibus LF  Li MX  Sykes BD 《Biochemistry》2000,39(41):12731-12738
Structural studies have shown that the regulatory domains of skeletal and cardiac troponin C (sNTnC and cNTnC) undergo different conformational changes upon Ca(2+) binding; sNTnC "opens" with a large exposure of the hydrophobic surface, while cNTnC retains a "closed" conformation similar to that in the apo state. This is mainly due to the fact that there is a defunct Ca(2+)-binding site I in cNTnC. Despite the striking difference, the two proteins bind their respective troponin I (TnI) regions (sTnI(115-131) and cTnI(147-163), respectively) in a similar open fashion. Thus, there must exist a delicate energetic balance between Ca(2+) and TnI binding and the accompanying conformational changes in TnC for each system. To understand the coupling between Ca(2+) and TnI binding and the concomitant structural changes, we have previously engineered an E41A mutant of sNTnC and demonstrated that this mutation drastically reduced the Ca(2+)-binding affinity of site I in sNTnC, and as a result, E41A-sNTnC remains closed in the Ca(2+)-bound state. In the present work, we investigated the interaction of E41A-sNTnC with the sTnI(115-131) peptide and found that the peptide binds to the Ca(2+)-saturated E41A-sNTnC with a 1:1 stoichiometry and a dissociation constant of 300 +/- 100 microM. The peptide-induced chemical shift changes resemble those of Ca(2+) binding to sNTnC, suggesting that sTnI(115-131) induces the "opening" of E41A-sNTnC. In addition, the binding of sTnI(115-131) appears to be accompanied by a conformational change in site I of E41A-sNTnC so that the damaged regulatory site can bind Ca(2+) more tightly. Without Ca(2+), sTnI(115-131) only interacts with E41A-sNTnC nonspecifically. When Ca(2+) is titrated into E41A-sNTnC in the presence of sTnI(115-131), the Ca(2+)-binding affinity of site I was enhanced by approximately 5-fold as compared to when sTnI(115-131) was not present. These observations suggest that the binding of Ca(2+) and TnI is intimately coupled to each other. Together with our previous studies on Ca(2+) and TnI peptide binding to sNTnC and cNTnC, these results allow us to dissect the mechanism and energetics of coupling of ligand binding and structural opening intricately involved in the regulation of skeletal and cardiac muscle contraction.  相似文献   

13.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation.  相似文献   

14.
Downstream Regulatory Element Antagonist Modulator (DREAM) belongs to the family of neuronal calcium sensors (NCS) that transduce the intracellular changes in Ca2+ concentration into a variety of responses including gene expression, regulation of Kv channel activity, and calcium homeostasis. Despite the significant sequence and structural similarities with other NCS members, DREAM shows several features unique among NCS such as formation of a tetramer in the apo-state, and interactions with various intracellular biomacromolecules including DNA, presenilin, Kv channels, and calmodulin. Here we use spectroscopic techniques in combination with molecular dynamics simulation to study conformational changes induced by Ca2+/Mg2+ association to DREAM. Our data indicate a minor impact of Ca2+ association on the overall structure of the N- and C-terminal domains, although Ca2+ binding decreases the conformational heterogeneity as evident from the decrease in the fluorescence lifetime distribution in the Ca2+ bound forms of the protein. Time-resolved fluorescence data indicate that Ca2+binding triggers a conformational transition that is characterized by more efficient quenching of Trp residue. The unfolding of DREAM occurs through an partially unfolded intermediate that is stabilized by Ca2+ association to EF-hand 3 and EF-hand 4. The native state is stabilized with respect to the partially unfolded state only in the presence of both Ca2+ and Mg2+ suggesting that, under physiological conditions, Ca2+ free DREAM exhibits a high conformational flexibility that may facilitate its physiological functions.  相似文献   

15.
The three-dimensional structures of the magnesium- and manganese-bound forms of calbindin D9k were determined to 1.6 A and 1.9 A resolution, respectively, using X-ray crystallography. These two structures are nearly identical but deviate significantly from both the calcium bound form and the metal ion-free (apo) form. The largest structural differences are seen in the C-terminal EF-hand, and involve changes in both metal ion coordination and helix packing. The N-terminal calcium binding site is not occupied by any metal ion in the magnesium and manganese structures, and shows little structural deviation from the apo and calcium bound forms. 1H-NMR and UV spectroscopic studies at physiological ion concentrations show that the C-terminal site of the protein is significantly populated by magnesium at resting cell calcium levels, and that there is a negative allosteric interaction between magnesium and calcium binding. Calcium binding was found to occur with positive cooperativity at physiological magnesium concentration.  相似文献   

16.
The gene, named cabB, encoding a calmodulin-like protein of 70 amino acids containing two helix-loop-helix EF-hand motifs was cloned from Streptomyces coelicolor A3(2). cabB was transcribed from a single promoter throughout growth. The CabB protein produced in Escherichia coli was a monomer in solution, although it corresponded to one half of a dumbbell shape of the eukaryotic calmodulins. CabB bound calcium and upon binding of calcium its alpha-helix content was increased, as determined by circular dichroism spectroscopy. The growth of cabB-disruptants (mutant DeltacabB) on minimal agar medium containing calcium higher than 20 mM was delayed, suggesting that CabB has a role in calcium homeostasis by serving as a calcium buffer or transporter, as suggested for calerythrin in actinomycetes and the invertebrate sarcoplasmic calcium-binding proteins. Wide distribution of cabB almost exclusively in actinomycetes suggests a common role of EF-hand CabB-type proteins in these filamentous, soil-dwelling Gram-positive bacterial genera.  相似文献   

17.
SmTAL1 is a calcium binding protein from the parasitic worm, Schistosoma mansoni. Structurally it is comprised of two domains – an N-terminal EF-hand domain and a C-terminal dynein light chain (DLC)-like domain. The protein has previously been shown to interact with the anti-schistosomal drug, praziquantel (PZQ). Here, we demonstrated that both EF-hands in the N-terminal domain are functional calcium ion binding sites. The second EF-hand appears to be more important in dictating affinity and mediating the conformational changes which occur on calcium ion binding. There is positive cooperativity between the four calcium ion binding sites in the dimeric form of SmTAL1. Both the EF-hand domain and the DLC-domain dimerise independently suggesting that both play a role in forming the SmTAL1 dimer. SmTAL1 binds non-cooperatively to PZQ and cooperatively to an IQ-motif from SmCav1B, a voltage-gated calcium channel. PZQ tends to strengthen this interaction, although the relationship is complex. These data suggest the hypothesis that SmTAL1 regulates at least one voltage-gated calcium channel and PZQ interferes with this process. This may be important in the molecular mechanism of this drug. It also suggests that compounds which bind SmTAL1, such as six from the Medicines for Malaria Box identified in this work, may represent possible leads for the discovery of novel antagonists.  相似文献   

18.
Neuronal calcium sensor-1 (NCS-1) is a major modulator of Ca2+ signaling with a known role in neurotransmitter release. NCS-1 has one cryptic (EF1) and three functional (EF2, EF3, and EF4) EF-hand motifs. However, it is not known which are the regulatory (Ca2+-specific) and structural (Ca2+- or Mg2+-binding) EF-hand motifs. To understand the specialized functions of NCS-1, identification of the ionic discrimination of the EF-hand sites is important. In this work, we determined the specificity of Ca2+ binding using NMR and EF-hand mutants. Ca2+ titration, as monitored by [15N,1H] heteronuclear single quantum coherence, suggests that Ca2+ binds to the EF2 and EF3 almost simultaneously, followed by EF4. Our NMR data suggest that Mg2+ binds to EF2 and EF3, thereby classifying them as structural sites, whereas EF4 is a Ca2+-specific or regulatory site. This was further corroborated using an EF2/EF3-disabled mutant, which binds only Ca2+ and not Mg2+. Ca2+ binding induces conformational rearrangements in the protein by reversing Mg2+-induced changes in Trp fluorescence and surface hydrophobicity. In a larger physiological perspective, exchanging or replacing Mg2+ with Ca2+ reduces the Ca2+-binding affinity of NCS-1 from 90 nM to 440 nM, which would be advantageous to the molecule by facilitating reversibility to the Ca2+-free state. Although the equilibrium unfolding transitions of apo-NCS-1 and Mg2+-bound NCS-1 are similar, the early unfolding transitions of Ca2+-bound NCS-1 are partially influenced in the presence of Mg2+. This study demonstrates the importance of Mg2+ as a modulator of calcium homeostasis and active-state behavior of NCS-1.  相似文献   

19.
Results of microcalorimetric titrations of calcium-binding proteins with calcium or magnesium have been reviewed and evaluated. Results were analyzed mostly in terms of heat capacity changes, which is most closely related to the structural changes of the molecule on metal binding. Two high-affinity sites of rabbit skeletal troponin C are distinguishable in terms of their affinity to calcium and associated enthalpy changes. Heat capacity changes on calcium binding to one of the two high-affinity sites is negative and is in the range ascribed to the ligand binding. In contrast, that to the other of the high-affinity sites is large and positive, indicating that a substantial area of hydrophobic groups become exposed to the solvent. In frog skeletal troponin C, the anomalous positive heat capacity changes occur in one of the low-affinity calcium-specific sites, so that this may be involved in the regulation of contraction. Unlike skeletal troponin C, both of the two high-affinity sites of cardiac troponin C show negative heat capacity changes. In calmodulin, heat capacity changes are positive but small, indicating that calcium binding may induce clustering of the hydrophobic residues on the surface of the molecule. In parvalbumins, heat capacity changes are negative, characteristic of most ligand binding.  相似文献   

20.
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the β-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号