首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Ubiquitination regulates a host of cellular processes by labeling proteins for degradation, but also by functioning as a regulatory, nonproteolytic posttranslational modification. Proteome-wide strategies to monitor changes in ubiquitination profiles are important to obtain insight into the various cellular functions of ubiquitination. Here we describe generation of stable cell lines expressing a tandem hexahistidine-biotin tag (HB-tag) fused to ubiquitin for two-step purification of the ubiquitinated proteome under fully denaturing conditions. Using this approach we identified 669 ubiquitinated proteins from HeLa cells, including 44 precise ubiquitin attachment sites on substrates and all seven possible ubiquitin chain-linkage types. To probe the dynamics of ubiquitination in response to perturbation of the ubiquitin/proteasome pathway, we combined ubiquitin profiling with quantitative mass spectrometry using the stable isotope labeling with amino acids in cell culture (SILAC) strategy. We compared untreated cells and cells treated with the proteasome inhibitor MG132 to identify ubiquitinated proteins that are targeted to the proteasome for degradation. A number of proteasome substrates were identified. In addition, the quantitative approach allowed us to compare proteasome targeting by different ubiquitin chain topologies in vivo. The tools and strategies described here can be applied to detect changes in ubiquitination dynamics in response to various changes in growth conditions and cellular stress and will contribute to our understanding of the ubiquitin/proteasome system.  相似文献   

2.
3.
A major fraction of intracellular protein degradation is mediated by the proteasome. Successful degradation of these substrates requires ubiquitination and delivery to the proteasome followed by protein unfolding and disassembly of the multiubiquitin chain. Enzymes, such as Rpn11, dismantle multiubiquitin chains, and mutations can affect proteasome assembly and activity. We report that different rpn11 mutations can affect proteasome interaction with ubiquitinated proteins. Moreover, proteasomes are unstable in rpn11-1 and do not form productive interactions with multiubiquitinated proteins despite high levels in cell extracts. However, increased levels of ubiquitinated proteins were found associated with shuttle factors. In contrast to rpn11-1, proteasomes expressing a catalytically inactive mutant (rpn11AXA) were more stable and bound very high amounts of ubiquitinated substrates. Expression of the carboxyl-terminal domain of Rpn11 partially suppressed the growth and proteasome stability defects of rpn11-1. These results indicate that ubiquitinated substrates are preferentially delivered to intact proteasome.  相似文献   

4.
Ubiquitination is an important post-translational event responsible for half-life and turnover of proteins inside the cell. Proteins are ubiquitinated by forming an iso-peptide bond between their lysine residue and C-terminal glycine residue of ubiquitin leading to rapid degradation of proteins by 26S proteosome complex. Deregulation of ubiquitination is manifested by aberrant expression of E3-ligase activity or mutation in the surroundings of ubiquitination sites. Many new experimentally validated ubiquitinated lysines have been recently identified that motivated the study of the environments surrounding the ubiquitinated lysines. With the help of known ubiquitinated proteins, here we present a comprehensive study of sequence and spatial environment of ubiquitination sites of human and yeast proteins. To identify position-specific features, this work distinguishes the spatial environments as proximity and distal regions. Certain amino acids specific to these regions, well differentiate the ubiquitination sites from non-ubiquitination sites are revealed. Additionally, amino acid signatures that contribute for protein disordered regions and solvent accessibility of amino acids are found to be contributing factors in ubiquitination sites. These results suggest that the ubiquitination site environment of the substrate determines the recognition and unfolding of substrate to facilitate the entry into 26S proteosomal complex. We believe that these findings will help in better prediction of ubiquitination sites using the sequence and spatial information.  相似文献   

5.
Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome.  相似文献   

6.
After oxidative stress, proteins that are oxidatively modified are degraded by the 20S proteasome. However, several studies have documented an enhanced ubiquitination of yet unknown proteins. Because ubiquitination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However, we were able to confirm an increase in ubiquitinated proteins 16 h after oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide-treated cells, as well as from control cells and cells treated with lactacystin, an irreversible proteasome inhibitor, and identified some of these proteins by MALDI tandem mass spectrometry. As a result we obtained 24 different proteins that can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified, ubiquitinated proteins confirms the thesis that ubiquitination upon oxidative stress is not a random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins.  相似文献   

7.
The 26S proteasome degrades ubiquitinated proteins, and proteasomal degradation controls various cellular events. Here we report that the human 26S proteasome is ubiquitinated, by which the ubiquitin receptors Adrm1 and S5a, the ATPase subunit Rpt5, and the deubiquitinating enzyme Uch37 are ubiquitinated in situ by proteasome-associating ubiquitination enzymes. Ubiquitination of these subunits significantly impairs the 26S proteasome''s ability to bind, deubiquitinate, and degrade ubiquitinated proteins. Moreover, ubiquitination of the 26S proteasome can be antagonized by proteasome-residing deubiquitinating enzymes, by the binding of polyubiquitin chains, and by certain cellular stress, indicating that proteasome ubiquitination is dynamic and regulated in cells. We propose that in situ ubiquitination of the 26S proteasome regulates its activity, which could function to adjust proteasomal activity in response to the alteration of cellular ubiquitination levels.  相似文献   

8.
9.
Ubiquitination is known to regulate early stages of intracellular vesicular transport, without proteasomal involvement. We now show that, in yeast, ubiquitination regulates a late-stage, membrane fusion, with proteasomal involvement. A known proteasome mutant had a vacuolar fragmentation phenotype in vivo often associated with vacuolar membrane fusion defects, suggesting a proteasomal role in fusion. Inhibiting vacuolar proteasomes interfered with membrane fusion in vitro, showing that fusion cannot occur without proteasomal degradation. If so, one would expect to find ubiquitinated proteins on vacuolar membranes. We found a small number of these, identified the most prevalent one as Ypt7 and mapped its two major ubiquitination sites. Ubiquitinated Ypt7 was linked to the degradation event that is necessary for fusion: vacuolar Ypt7 and vacuolar proteasomes were interdependent, ubiquitinated Ypt7 became a proteasomal substrate during fusion, and proteasome inhibitors reduced fusion to greater degree when we decreased Ypt7 ubiquitination. The strongest model holds that fusion cannot proceed without proteasomal degradation of ubiquitinated Ypt7. As Ypt7 is one of many Rab GTPases, ubiquitin-proteasome regulation may be involved in membrane fusion elsewhere.  相似文献   

10.
Ubiquitin (Ub) is a small protein (8 kDa) found in all eukaryotic cells, which is conjugated covalently to numerous proteins, tagging them for recognition by a downstream effector. One of the best characterized functions of Ub is targeting proteins for either selective degradation by the proteasome, or for bulk degradation by the autophagy-lysosome system. The executing arm of the UPS is the 26S proteasome, a large multicatalytic complex. While much is known about the synthesis and assembly of the proteasome's subunits, the mechanism(s) underlying its removal has remained obscure, similar to that of many other components of the ubiquitin-proteasome system. Our recent study identified autophagy as the degrading mechanism for the mammalian proteasome, mostly under stress conditions. Amino acid starvation induces specific ubiquitination of certain 19S proteasomal subunits that is essential for its binding to SQSTM1/p62, the protein that shuttles the ubiquitinated proteasome to the autophagic machinery. SQSTM1 delivers ubiquitinated substrates for proteasomal degradation via interaction of its PB1 domain with the 19S proteasomal subunit PSMD4/Rpn10, in situations where the proteasome serves as a “predator." In contrast, we found that the UBA domain of SQSTM1 is essential for its interaction with the ubiquitinated proteasome and its delivery to the autophagosome, rendering the proteasome a “prey.”  相似文献   

11.
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.  相似文献   

12.
Dai RM  Li CC 《Nature cell biology》2001,3(8):740-744
The ubiquitin-proteasome (Ub-Pr) degradation pathway regulates many cellular activities, but how ubiquitinated substrates are targeted to the proteasome is not understood. We have shown previously that valosin-containing protein (VCP) physically and functionally targets the ubiquitinated nuclear factor kappaB inhibitor, IkappaBalpha to the proteasome for degradation. VCP is an abundant and a highly conserved member of the AAA (ATPases associated with a variety of cellular activities) family. Besides acting as a chaperone in membrane fusions, VCP has been shown to have a role in a number of seemingly unrelated cellular activities. Here we report that loss of VCP function results in an inhibition of Ub-Pr-mediated degradation and an accumulation of ubiquitinated proteins. VCP associates with ubiquitinated proteins through the direct binding of its amino-terminal domain to the multi-ubiquitin chains of substrates. Furthermore, its N-terminal domain is required in Ub-Pr-mediated degradation. We conclude that VCP is a multi-ubiquitin chain-targeting factor that is required in the degradation of many Ub-Pr pathway substrates, and provide a common mechanism that underlies many of the functions of VCP.  相似文献   

13.
14.
G-protein-coupled receptors and transporters in Saccharomyces cerevisiae are modified with ubiquitin in response to ligand biding. In most cases, the proteasome does not recognize these ubiquitinated proteins. Instead, ubiquitination serves to trigger internalization and degradation of plasma membrane proteins in the lysosome-like vacuole. A number of mammalian receptors and at least one ion channel undergo ubiquitination at the plasma membrane, and this modification is required for their downregulation. Some of these cell-surface proteins appear to be degraded by both the proteasome and lysosomal proteases. Recent evidence indicates that other proteins required for receptor internalization might also be regulated by ubiquitination, suggesting that ubiquitin plays diverse roles in regulating plasma membrane protein activity.  相似文献   

15.
The A+U-rich element (ARE) in the 3′ non-coding region (3′ NCR) of short-lived cytokine mRNAs binds several regulatory proteins, including hnRNP D/AUF1, which comprises four isoforms of 37, 40, 42 and 45 kDa. ARE-mRNA degradation involves ubiquitin–proteasome activity, and one or more AUF1 proteins are thought to be ubiquitinated. Here we have characterized the mechanism for differential ubiquitination and degradation of the different AUF1 protein isoforms. We demonstrate in an in vitro ubiquitination system that the p37, followed by the p40 protein, are strongly ubiquitinated, whereas the p42 and p45 forms are not. Over expression in cells of enzymes that control the ubiquitin cycle were found to control p37 and p40 AUF1 protein levels through ubiquitination and proteasome activity, but not p42 and p45 forms. The p42 and p45 AUF1 proteins share a C-terminal exon 7 that is not found in the p37/p40 isoforms. Our studies show that exon 7 blocks ubiquitination and rapid degradation of AUF1 proteins, whereas its deletion permits ubiquitination to occur and promotes rapid turnover of AUF1 proteins. Thus, the stabilities of AUF1 isoforms are differentially controlled by insertion of an alternate exon that regulates ubiquitin targeting activity.  相似文献   

16.
Post-translational modification is central to protein stability and to the naodulation of protein activity.Various types ofprotein modification,such as phosphorylation,methylation,acetylation,myristoylation,glycosylation,and ubiquitina-tion,have been reported.Among them,ubiquitination distinguishes itself from others in that most of the ubiquitinatedproteins are targeted to the 26S proteasome for degradation.The ubiquitin/26S proteasome system constitutes the majorprotein degradation pathway in the cell.In recent years,the importance of the ubiquitination machinery in the controlof numerous eukaryotic cellular functions has been increasingly appreciated.Increasing number of E3 ubiquitin ligasesand their substrates,including a variety of essential cellular regulators have been identified.Studies in the past severalyears have revealed that the ubiquitination system is important for a broad range of plant developmental processes andresponses to abiotic and biotic stresses.This review discusses recent advances in the functional analysis of ubiquitina-tion-associated proteins from plants and pathogens that play important roles in plant-microbe interactions.  相似文献   

17.
Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.  相似文献   

18.
Mitochondrial outer membrane proteins have been found to be ubiquitinated and degraded by the proteasome. This process shares at least one component of the ERAD pathway of ER membrane protein degradation, the AAA ATPase cdc48/p97/VCP, thought to extract integral membrane proteins from the lipid bilayer and chaperone them to the proteasome. Proteasomal degradation of the outer mitochondrial membrane (OMM) protein Mcl1 regulates apoptosis whereas Parkin-mediated ubiquitination and degradation of Mitofusins can inhibit mitochondrial fusion and promote mitophagy. The breadth of OMM ubiquitin/proteasome substrates and the physiological relevance of their turnover are only beginning to be understood.  相似文献   

19.
Molecular chaperones Hsp70 and Hsp90 are in part responsible for maintaining the viability of cells by facilitating the folding and maturation process of many essential client proteins. The ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) has been shown in vitro and in vivo to associate with Hsp70 and Hsp90 and ubiquitinate them, thus targeting them to the proteasome for degradation. Here, we study one facet of this CHIP-mediated turnover by determining the lysine residues on human Hsp70 and Hsp90 ubiquitinated by CHIP. We performed in vitro ubiquitination reactions of the chaperones using purified components and analyzed the samples by tandem mass spectrometry to identify modified lysine residues. Six such ubiquitination sites were identified on Hsp70 (K325, K451, K524, K526, K559, and K561) and 13 ubiquitinated lysine residues were found on Hsp90 (K107, K204, K219, K275, K284, K347, K399, K477, K481, K538, K550, K607, and K623). We mapped the ubiquitination sites on homology models of almost full-length human Hsp70 and Hsp90, which were found to cluster in certain regions of the structures. Furthermore, we determined that CHIP forms polyubiquitin chains on Hsp70 and Hsp90 linked via K6, K11, K48, and K63. These findings clarify the mode of ubiquitination of Hsp70 and Hsp90 by CHIP, which ultimately leads to their degradation.  相似文献   

20.
Lysine ubiquitination is an important and versatile protein post-translational modification. Numerous cellular functions are regulated by ubiquitination, suggesting that extensive numbers of proteins, if not all, are modified with ubiquitin at certain times. However, proteome-wide profiling of ubiquitination sites in the mammalian system is technically challenging. We report the design and characterization of an engineered protein affinity reagent for the isolation of ubiquitinated proteins and the identification of ubiquitination sites with mass spectrometry. This recombinant protein consists of four tandem repeats of ubiquitin-associated domain from UBQLN1 fused to a GST tag. We used this GST-qUBA reagent to isolate polyubiquitinated proteins and identified 294 endogenous ubiquitination sites on 223 proteins from human 293T cells without proteasome inhibitors or overexpression of ubiquitin. Mitochondrial proteins constitute 14.7% of this data set, implicating ubiquitination in a wide range of mitochondrial functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号