首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several members of the ATP-binding cassette (ABC) transporter superfamily, including P-glycoprotein and the half-transporter ABCG2, can confer multidrug resistance to cancer cells in culture by functioning as ATP-dependent efflux pumps. ABCG2 variants harboring a mutation at arginine 482 have been cloned from several drug-resistant cell lines, and these variants differ in their substrate transport phenotype. In this study, we changed the wild-type arginine 482 in human ABCG2 to each one of the 19 other standard amino acids and expressed each one transiently in HeLa cells. Using the 5D3 antibody that recognizes a cell surface epitope of ABCG2, we observed that all the mutants were expressed at the cell surface. However, the mutant ABCG2 proteins differed markedly in transport activity. All of the variants were capable of transporting one or more of the substrates used in this study, with the exception of the R482K mutant, which is completely devoid of transport ability. Six of the mutants (R482G, R482H, R482K, R482P, R482T, and R482Y) and the wild-type protein (R482wt) were selected for studies of basal and stimulated ATPase activity and photoaffinity labeling with the substrate analog [125I]iodoarylazidoprazosin. Whereas these seven ABCG2 variants differed markedly in ATPase activity, all were able to specifically bind the substrate analog [125I]iodoarylazidoprazosin. These data suggest that residue 482 plays an important role in substrate transport and ATP turnover, but that the nature of this amino acid may not be important for substrate recognition and binding.  相似文献   

2.
Based on recent analytical and enzymological studies, a topological model for the role of alpha-D-mannosyl-(1-->3)-alpha-D-mannosyl-(1-->3)-diacylglycerol (Man(2)-DAG) as a lipid anchor precursor and mannosylphosphorylundecaprenol (Man-P-Und) as a mannosyl donor in the assembly of a membrane-associated lipomannan (LM) in Micrococcus luteus has been proposed. In this study, a [(3)H]mannose-suicide selection procedure has been used to identify temperature-sensitive (ts) mutants defective in LM assembly. Two micrococcal mutants with abnormal levels of Man(2)-DAG and LM at the nonpermissive temperature (37 degrees C), mms1 and mms2, have been isolated and characterized. In vivo and in vitro biochemical assays indicate that mms1 cells have a defect in the mannosyltransferase catalyzing the conversion of Man-DAG to Man(2)-DAG, and mms2 has a temperature-sensitive defect in the synthesis of Man-P-Und. Because mms1 cells are depleted of endogenous Man(2)-DAG, membranes from this mutant efficiently converted purified, exogenous [(3)H]Man(2)-DAG to [(3)H]LM by a Man-P-Und-dependent process. An obligatory role for Man-P-Und as a mannosyl donor in the elongation process was also demonstrated by showing that the conversion of exogenous [(3)H]Man(2)-DAG to [(3)H]LM by membranes from mms1 cells in the presence of GDP-Man was inhibited by amphomycin. In addition, consistent with Man(2)-DAG serving as a lipid anchor precursor for LM assembly, endogenous, prelabeled [(3)H]Man(2)-DAG was converted to [(3)H]LM when membranes from mms2 cells were incubated with purified, exogenous Man-P-Und. These studies provide the first direct proof for the role of Man(2)-DAG as the lipid anchor precursor for LM, and suggest that Man(2)-DAG may be essential for the normal growth of M. luteus cells.  相似文献   

3.
We report an improved method for the synthesis of high specific activity insect [10-(3)H]juvenile hormones (JH) I, II, and III which affords both enantiomers of each in high optical purity. A synthetic route for JH I was modified to give higher yields and purity. We increased the specific activity of the synthetic [10-(3)H]JHs using normal phase liquid chromatography optimized to give near baseline resolution of [10-(3)H]JHs and unlabeled JHs. Racemic [10-(3)H]JHs and their corresponding diol metabolites were enantiomerically separated using a chiral column eluted with 2-propanol:hexane. Acidic hydration of the unnatural antipode of the [10-(3)H]JHs gives the diol antipode with the same stereochemistry as that from epoxide hydrolase action on the natural JH antipode. The [10-(3)H]JH diol enantiomers can also be resolved with the same chiral column using a more polar solvent. The synthesis of high specific activity chiral ethyl ester analogs of JH I and II can also be accomplished using this synthetic route.  相似文献   

4.
This research examines the in vitro interaction of phthalate diesters and monoesters with the G protein-coupled cannabinoid 1 (CB1) receptor, a presynaptic complex involved in the regulation of synaptic activity in mammalian brain. The diesters, n-butylbenzylphthalate (nBBP), di-n-hexylphthalate (DnHP), di-n-butylphthalate (DnBP), di-2-ethylhexylphthalate (DEHP), di-isooctylphthalate (DiOP) and di-n-octylphthalate (DnOP) inhibited the specific binding of the CB1 receptor agonist [3H]CP-55940 to mouse whole brain membranes at micromolar concentrations (IC50s: nBBP 27.4 μM; DnHP 33.9 μM; DnBP 45.9 μM; DEHP 47.4 μM; DiOP 55.4 μM; DnOP 75.2 μM). DnHP, DnBP and nBBP achieved full (or close to full) blockade of [3H]CP-55940 binding, whereas DEHP, DiOP and DnOP produced partial (55-70%) inhibition. Binding experiments with phenylmethane-sulfonylfluoride (PMSF) indicated that the ester linkages of nBBP and DnBP remain intact during assay. The monoesters mono-2-ethylhexylphthalate (M2EHP) and mono-isohexylphthalate (MiHP) failed to reach IC50 at 150 μM and mono-n-butylphthalate (MnBP) was inactive. Inhibitory potencies in the [3H]CP-55940 binding assay were positively correlated with inhibition of CB1 receptor agonist-stimulated binding of [35S]GTPγS to the G protein, demonstrating that phthalates cause functional impairment of this complex. DnBP, nBBP and DEHP also inhibited binding of [3H]SR141716A, whereas inhibition with MiHP was comparatively weak and MnBP had no effect. Equilibrium binding experiments with [3H]SR141716A showed that phthalates reduce the Bmax of radioligand without changing its Kd. DnBP and nBBP also rapidly enhanced the dissociation of [3H]SR141716A. Our data are consistent with an allosteric mechanism for inhibition, with phthalates acting as relatively low affinity antagonists of CB1 receptors and cannabinoid agonist-dependent activation of the G-protein. Further studies are warranted, since some phthalate esters may have potential to modify CB1 receptor-dependent behavioral and physiological outcomes in the whole animal.  相似文献   

5.
The anti-tumor efficacy of liposomal formulations of cell cycle dependent anticancer drugs is critically dependent on the rates at which the drugs are released from the liposomes. Previous work on liposomal formulations of vincristine have shown increasing efficacy for formulations with progressively slower release rates. Recent work has also shown that liposomal formulations of vincristine with higher drug-to-lipid (D/L) ratios exhibit reduced release rates. In this work, the effects of very high D/L ratios on vincristine release rates are investigated, and the antitumor efficacy of these formulations characterized in human xenograft tumor models. It is shown that the half-times (T1/2) for vincristine release from egg sphingomyelin/cholesterol liposomes in vivo can be adjusted from T1/2 = 6.1 h for a formulation with a D/L of 0.025 (wt/wt) to T1/2 = 117 h (extrapolated) for a formulation with a D/L ratio of 0.6 (wt/wt). The increase in drug retention at the higher D/L ratios appears to be related to the presence of drug precipitates in the liposomes. Variations in the D/L ratio did not affect the circulation lifetimes of the liposomal vincristine formulations. The relationship between drug release rates and anti-tumor efficacy was evaluated using a MX-1 human mammary tumor model. It was found that the antitumor activity of the liposomal vincristine formulations increased as D/L ratio increased from 0.025 to 0.1 (wt/wt) (T1/2 = 6.1-15.6 h respectively) but decreased at higher D/L ratios (D/L = 0.6, wt/wt) (T1/2 = 117 h). Free vincristine exhibited the lowest activity of all formulations examined. These results demonstrate that varying the D/L ratio provides a powerful method for regulating drug release and allows the generation of liposomal formulations of vincristine with therapeutically optimized drug release rates.  相似文献   

6.
We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe --> F(5)-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe --> F(5)-Phe mutations are interesting because aryl-perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl-aryl or perfluoroaryl-perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 --> F(5)-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by approximately 1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe --> F(5)-Phe mutations offer the possibility of greater tertiary structural stability from side chain-side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability.  相似文献   

7.
An isopycnic gradient technique is described by which interstrand cross-linking of DNA in mammalian cells resulting from treatment with difunctional alkylating agents can be quantitated.  相似文献   

8.
Summary In renal tubular epithelial cells, oxidant injury results in several metabolic alterations including ATP depletion, decreased Na+K+ ATPase activity, and altered intracellular sodium and potassium content. To investigate the recovery of LLC-PK1 cells following oxidant injury and to determine if recovery can be accelerated, we induced oxidant stress in LLC-PK1 cells with 500 μM hydrogen peroxide for 60 min. Identical cohorts of oxidant-stressed cells were incubated in recovery medium without epidermal growth factor (EGF) or recovery medium containing 25 ng EGF per ml. ATP levels, Na+K+ ATPase activity in whole cells, Na+K+ ATPase activity in disrupted cells, and intracellular sodium and potassium ion content were determined at 0, 5, 24, 48, and 72 h following oxidant injury in each cohort of cells. In oxidant-stressed cells recovering in medium without EGF, ATP levels, Na+K+ ATPase activity, and intracellular ion content improved but continued to remain substantially lower than control values at all time points following oxidant stress. In cells recovering in medium with EGF, ATP levels, Na+K+ ATPase activity, and the intracellular potassium-to-sodium ratio were significantly higher at nearly all time points than values in cells recovering in medium alone. In cells recovering with added EGF, Na+K+ ATPase activity had improved to control levels, whereas ATP levels and intracellular ion content approached control values by 72 h following oxidant stress. We conclude that oxidant-mediated ATP depletion, altered Na+K+ ATPase activity, and intracellular ion content remain depressed for several d following oxidant stress and that EGF accelerated recovery of LLC-PK1 cells from oxidant injury.  相似文献   

9.
Laboratory-Directed Protein Evolution   总被引:19,自引:0,他引:19       下载免费PDF全文
Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to “evolve” in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences.  相似文献   

10.
A Fourier deconvolution method has been developed to explicitly determine the amount of backbone amide deuterium incorporated into protein regions or segments by hydrogen/deuterium (H/D) exchange with high-resolution mass spectrometry. Determination and analysis of the level and number of backbone amide exchanging in solution provide more information about the solvent accessibility of the protein than do previous centroid methods, which only calculate the average deuterons exchanged. After exchange, a protein is digested into peptides as a way of determining the exchange within a local area of the protein. The mass of a peptide upon deuteration is a sum of the natural isotope abundance, fast exchanging side-chain hydrogens (present in MALDI-TOF H/2H data) and backbone amide exchange. Removal of the components of the isotopic distribution due to the natural isotope abundances and the fast exchanging side-chains allows for a precise quantification of the levels of backbone amide exchange, as is shown by an example from protein kinase A. The deconvoluted results are affected by overlapping peptides or inconsistent mass envelopes, and evaluation procedures for these cases are discussed. Finally, a method for determining the back exchange corrected populations is presented, and its effect on the data is discussed under various circumstances.  相似文献   

11.
Membrane proteins or cytokines are sometimes difficult to isolate and purify. Our group recently concentrated on epidermal growth factor (EGF) protein expression studies. Mature EGF was initially identified from mouse submaxillary gland extract as a stimulator of eyelid opening and incisor eruption when injected into newborn mice and rats. The EGF precursor is a transmembrane protein with eight additional EGF-like repeats. Our previous study has shown that the EGF precursor without these eight EGF-like repeats (hEGF) was biologically active. Here, we introduce a modified method for rapid detection of hEGF. The membranous protein was directly extracted from various organs of transgenic mice (including the submandibular gland, kidney, liver, heart, and testis) with two different buffers and easily detected by semiquantitative immunoblotting.  相似文献   

12.
13.
Lower global DNA methylation is associated with genomic instability and it is one of the epigenetic mechanisms relevant to carcinogenesis. Emerging evidence for several cancers suggests that lower overall levels of global DNA methylation in blood are associated with different cancer types, although less is known about breast cancer. We examined global DNA methylation levels using a sibling design in 273 sisters affected with breast cancer and 335 unaffected sisters from the New York site of the Breast Cancer Family Registry. We measured global DNA methylation in total white blood cell (WBC) and granulocyte DNA by two different methods, the [3H]-methyl acceptance assay and the luminometric methylation assay (LUMA). Global methylation levels were only modestly correlated between sisters discordant for breast cancer (Spearman correlation coefficients ranged from -0.08 to 0.24 depending on assay and DNA source). Using conditional logistic regression models, women in the quartile with the lowest DNA methylation levels (as measured by the [3H]-methyl acceptance assay) had a 1.8-fold (95% CI = 1.0–3.3) higher relative association with breast cancer than women in the quartile with the highest DNA methylation levels. When we examined the association on a continuous scale, we also observed a positive association (odds ratio, OR = 1.3, 95% CI = 1.0–1.7, for a one unit change in the natural logarithm of the DPM/μg of DNA). We observed no association between measures by the LUMA assay and breast cancer risk. If replicated in prospective studies, this study suggests that global DNA methylation levels measured in WBC may be a potential biomarker of breast cancer risk even within families at higher risk of cancer.  相似文献   

14.
The directed migration of cells towards chemical stimuli incorporates simultaneous changes in both the concentration of a chemotactic agent and its concentration gradient, each of which may influence cell migratory response. In this study, we utilized a microfluidic system to examine the interactions between epidermal growth factor (EGF) concentration and EGF gradient in stimulating the chemotaxis of connective tissue-derived fibroblast cells. Cells seeded within microfluidic devices were exposed to concentration gradients established by EGF concentrations that matched or exceeded those required for maximum chemotactic responses seen in transfilter migration assays. The migration of individual cells within the device was measured optically after steady-state gradients had been experimentally established. Results illustrate that motility was maximal at EGF concentration gradients between .01- and 0.1-ng/(mL.mm) for all concentrations used. In contrast, the number of motile cells continually increased with increasing gradient steepness for all concentrations examined. Microfluidics-based experiments exposed cells to minute changes in EGF concentration and gradient that were in line with the acute EGFR phosphorylation measured. Correlation of experimental data with established mathematical models illustrated that the fibroblasts studied exhibit an unreported chemosensitivity to minute changes in EGF concentration, similar to that reported for highly motile cells, such as macrophages. Our results demonstrate that shallow chemotactic gradients, while previously unexplored, are necessary to induce the rate of directed cellular migration and the number of motile cells in the connective tissue-derived cells examined.  相似文献   

15.
Summary This laboratory recently reported that normal human mesothelial cells require epidermal growth factor (EGF) and hydrocortisone (HC), in addition to fetal calf serum and a complex defined medium component, in order to grow optimally in surface culture (9). We report here that this normal cell type also forms large colonies at high efficiency in semi-solid medium, but exhihits more stringent serum and EGF requirements for anchorage-independent than for surface growth. Mesothelial cells are unable to divide at all in semi-solid medium with added EGF or with less than 2% serum, whereas they grow slowly but progressively in surface culture under such conditions. In semi-solid medium containing 20% serum and HC, mesothelial cells are stimulated to divide by the addition of as little as 30 pg/ml purified EGF. Human urine or male mouse plasma could substitute for purified EGF, yielding growth commensurate with the levels of EGF in these biological fluids previously measured by others using radioreceptor and radioimmune assays. Thus growth of mesothelial cells in semi-solid medium can serve as a highly sensitive assay of EGF biological activity which is unaffected by the presence of serum proteins. In addition, our results demonstrate that fetal calf serum does not provide mitogenic levels of EGF to cultured cells, raising the question of the identity of plasma and serum mitogens. This work was supported by NIH grants RO1 AG02048 and RO1 CA26656 to James G. Rheinwald and by NIH postdoctoral fellowship F32 AG05303 to Paul J. La Rocca.  相似文献   

16.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

17.
Extracts of Valeriana officinalis have been used in folkloric medicine for its sedative, hypnotic, tranquilizer and anticonvulsant effects, and may interact with -aminobutyric acid (GABA) and/or benzodiazepine sites. At low concentrations, valerian extracts enhance [3H]flunitrazepam binding (EC50 4.13 × 10–10 mg/ml). However, this increased [3H]flunitrazepam binding is replaced by an inhibition at higher concentrations (IC50 of 4.82 × 10–1 mg/ml). These results are consistent with the presence of at least two different biological activities interacting with [3H]flunitrazepam binding sites. Valerian extracts also potentiate K+ or veratridine-stimulated release of radioactivity from hippocampal slices preloaded with [3H]GABA. Finally, inhibition of synaptosomal [3H]GABA uptake by valerian extracts also displays a biphasic interaction with guvacine. The results confirm that valerian extracts have effects on GABAA receptors, but can also interact at other presynaptic components of GABAergic neurons.  相似文献   

18.
19.
We present here the characterization of the epitope recognized by the AT180 monoclonal antibody currently used to define an Alzheimer’s disease (AD)-related pathological form of the phosphorylated Tau protein. Some ambiguity remains as to the exact phospho-residue(s) recognized by this monoclonal: pThr231 or both pThr231 and pSer235. To answer this question, we have used a combination of nuclear magnetic resonance (NMR) and fluorescence spectroscopy to characterize in a qualitative and quantitative manner the phospho-residue(s) essential for the epitope recognition. Data from the first step of NMR experiments are used to map the residues bound by the antibodies, which were found to be limited to a few residues. A fluorophore is then chemically attached to a cystein residue introduced close-by the mapped epitope, at arginine 221, by mutagenesis of the recombinant protein. The second step of Förster resonance energy transfer (FRET) between the AT180 antibody tryptophanes and the phospho-Tau protein fluorophore allows to calculate a dissociation constant Kd of 30 nM. We show that the sole pThr231 is necessary for the AT180 recognition of phospho-Tau and that phosphorylation of Ser235 does not interfere with the binding.  相似文献   

20.
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号