首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Force and motion generation by actomyosin involves the cyclic formation and transition between weakly and strongly bound complexes of these proteins. Actin's N-terminus is believed to play a greater role in the formation of the weakly bound actomyosin states than in the formation of the strongly bound actomyosin states. It has been the goal of this project to determine whether the interaction of actin's N-terminus with myosin changes upon transition between these two states. To this end, a yeast actin mutant, Cys-1, was constructed by the insertion of a cysteine residue at actin's N-terminus and replacement of the C-terminal cysteine with alanine. The N-terminal cysteine was labeled stoichiometrically with pyrene maleimide, and the properties of the modified mutant actin were examined prior to spectroscopic measurements. Among these properties, actin polymerization, strong S1 binding, and the activation of S1 ATPase by pyrenyl-Cys-1 actin were not significantly different from those of wild-type yeast actin, while small changes were observed in the weak S1 binding and the in vitro motility of actin filaments. Fluorescence changes upon binding of S1 to pyrenyl-Cys-1 actin were measured for the strongly (with or without ADP) and weakly (with ATP and ATPgammaS) bound acto-S1 states. The fluorescence increased in each case, but the increase was greater (by about 75%) in the presence of MgATP and MgATPgammaS than in the rigor state. This demonstrates a transition at the S1 contact with actin's N-terminus between the weakly and strongly bound states, and implies either a closer proximity of the pyrene probe on Cys-1 to structural elements on S1 (most likely the loop of residues 626-647) or greater S1-induced changes at the N-terminus of actin in the weakly bound acto-S1 states.  相似文献   

2.
Root DD  Wang K 《Biochemistry》2001,40(5):1171-1186
Human nebulin fragments, NA3 and NA4, corresponding to individual superrepeats display high-affinity interactions with individual actin protomers in cosedimentation and solid-phase binding assays. Stoichiometric analysis of nebulin fragment-induced actin polymerization and inhibition of actin-activated S1 ATPase indicate that one superrepeat influences multiple actin molecules along the F-actin filament, consistent with a combination of strong and weak interactions of nebulin over the length of the actin filament. The mechanisms by which human nebulin fragments affect the interaction between actin and myosin S1 are studied by fluorescence quenching, polarization, and resonance energy transfer. We show that, under strong binding conditions, premixing actin with the NA3 prior to adding myosin subfragment 1 (S1) inhibits the rate of actoS1 association. The nebulin fragments, NA3 and NA4, caused little effect on the extent of actoS1 binding at equilibrium but did alter the nature of the complex as evidenced by an increase in the resonance energy transfer efficiencies between S1 and actin in the absence of ATP. The addition of low concentrations of ATP rapidly dissociates the strong-binding actoS1 irrespective of the presence or absence of nebulin fragment. Interestingly, the strongly bound state reforms rapidly after S1 hydrolyzes all available ATP. These observations are consistent with the notion that nebulin might contribute to optimizing the alignment of actomyosin interactions and inhibit suboptimal actomyosin contacts.  相似文献   

3.
Conformational changes induced by ATP hydrolysis on actin are involved in the regulation of complex actin networks. Previous structural and biochemical data implicate the DNase I binding loop (D-loop) of actin in such nucleotide-dependent changes. Here, we investigated the structural and conformational states of the D-loop (in solution) using cysteine scanning mutagenesis and site-directed labeling. The reactivity of D-loop cysteine mutants toward acrylodan and the mobility of spin labels on these mutants do not show patterns of an α-helical structure in monomeric and filamentous actin, irrespective of the bound nucleotide. Upon transition from monomeric to filamentous actin, acrylodan emission spectra and electron paramagnetic resonance line shapes of labeled mutants are blue-shifted and more immobilized, respectively, with the central residues (residues 43–47) showing the most drastic changes. Moreover, complex electron paramagnetic resonance line shapes of spin-labeled mutants suggest several conformational states of the D-loop. Together with a new (to our knowledge) actin crystal structure that reveals the D-loop in a unique hairpin conformation, our data suggest that the D-loop equilibrates in F-actin among different conformational states irrespective of the nucleotide state of actin.  相似文献   

4.
C L Berger  D D Thomas 《Biochemistry》1991,30(46):11036-11045
We have used saturation-transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin subfragment one (MSL-S1) bound to actin in the presence of the ATP analogues AMPPNP (5'-adenylylimido diphosphate) and ATP gamma S [adenosine 5'-O-(3-thiotriphosphate)], which are believed to trap myosin in strongly and weakly bound intermediate states of the actomyosin ATPase cycle, respectively. Sedimentation binding measurements were used to determine the fraction of myosin heads bound to actin under ST-EPR conditions and the fraction of heads containing bound nucleotide. ST-EPR spectra were then corrected to obtain the spectrum corresponding to the ternary complex (actin.MSL-S1.nucleotide). The ST-EPR spectrum of MSL-S1.AMPPNP bound to actin is identical to that obtained in the absence of nucleotide (rigor complex), indicating no rotational motion of MSL-S1 relative to actin on the microsecond time scale. However, MSL-S1-ATP gamma S bound to actin is rotationally mobile, with an effective rotational correlation time (tau r) of 17 +/- 2 microseconds. This motion is similar to that observed previously for actin-bound MSL-S1 during the steady-state hydrolysis of ATP [Berger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8753-8757]. We conclude that, in solution, the weakly bound actin-attached states of the myosin ATPase cycle undergo microsecond rotational motions, while the strongly bound intermediates do not, and that these motions are likely to be involved in the molecular mechanism of muscle contraction.  相似文献   

5.
Tropomyosin binds along actin filaments and regulates actin-myosin interaction in muscle and nonmuscle cells. Seven periodic amino acid repeats are proposed to correspond to actin binding sites, and the middle periods are important for cooperative activation of actin by myosin. The functional contributions of individual periods were studied in mutants in which periods 2-6 were individually deleted from rat striated muscle alphaalpha-tropomyosin or replaced with a leucine zipper sequence. Unacetylated recombinant tropomyosins were assayed for actin binding, regulation of the actomyosin ATPase with troponin, cooperative myosin S1-induced binding to actin, and thermal stability. Tropomyosin function is relatively insensitive to deletion of period 2, but loss increases as the deletion is shifted toward the C-terminus. Retention of function upon deletion of the periodic repeats is in the order of 2 > 3 approximately 4 approximately 6 > 5. Internal periods are important for specific functions and are not quasiequivalent. Deletion of period 5 (residues 166-207), and especially deletion or replacement of residues 166-188, a constitutively expressed region encoded by exon 5, had severe consequences on actin affinity and cooperative myosin S1-induced binding to actin. Period 6, residues 208-242, part of the troponin binding site, is required for full inhibition of the actomyosin ATPase in the absence of calcium. The effect of the deletion can depend on its context, suggesting that sequence alone is not the only factor important for function. We propose that the local structure and stability, and consequent flexibility, of the coiled coil are major determinants of actin affinity.  相似文献   

6.
The binding of caldesmon and its actin-binding fragments to actin was studied by using peptide antibodies directed against two actin sites implicated in actomyosin interactions. Antibodies against residues 1-7 on skeletal alpha-actin strongly inhibited the binding of caldesmon to actin and perturbed to a smaller extent the interaction between actin and the actin binding fragments. Carbodiimide coupling of ethylenediamine to the NH2-terminal acidic residues on actin inhibited the binding of caldesmon and its fragments to actin to a similar extent as the (residues 1-7) antibodies. Antibodies against residues 18-28 showed only limited competition with caldesmon for the binding to actin. These results lead to the following conclusions. (i) The NH2-terminal residues on actin play an important role in the binding of caldesmon to actin, (ii) residues 18-28 on actin do not form a major caldesmon interaction site, and (iii) the actin-binding fragments do not contain the full actin-binding interface. These conclusions and other literature data suggest that caldesmon regulates the actomyosin ATPase by competing with myosin.ATP for the NH2-terminal segment on actin.  相似文献   

7.
We have used site-directed spin and fluorescence labeling to test molecular models of the actin-myosin interface. Force is generated when the actin-myosin complex undergoes a transition from a disordered weak-binding state to an ordered strong-binding state. Actomyosin interface models, in which residues are classified as contributing to either weak or strong binding, have been derived by fitting individual crystallographic structures of actin and myosin into actomyosin cryo-EM maps. Our goal is to test these models using site-directed spectroscopic probes on actin and myosin. Starting with Cys-lite constructs of both yeast actin (ActC) and the Dictyostelium myosin II motor domain (S1dC), site-directed labeling (SDL) mutants were generated by mutating residues to Cys in the proposed weak and strong-binding interfaces. This report focuses on the effects of forming the strong-binding complex on four SDL mutants, two located in the proposed weak-binding interface (ActC5 and S1dC619) and two located in the proposed strong-binding interface (ActC345 and S1dC401). Neither the mutations nor labeling prevented strong actomyosin binding or actin-activation of myosin ATPase. Formation of the strong-binding complex resulted in decreased spin and fluorescence probe mobility at all sites, but both myosin-bound probes showed remarkably high mobility even after complex formation. Complex formation decreased solvent accessibility for both actin-bound probes, but increased it for the myosin-bound probes. These results are not consistent with a simple model in which there are discrete weak and strong interfaces, with only the strong interface forming under strong-binding conditions, nor are they consistent with a model in which surface residues become rigid and inaccessible upon complex formation. We conclude that all four of these residues are involved in the strong actin-myosin interface, but this interface is remarkably dynamic, especially on the surface of myosin.  相似文献   

8.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to measure the microsecond rotational motion of actin-bound myosin heads in spin-labeled myofibrils in the presence of the ATP analogs AMPPNP (5'-adenylylimido-diphosphate) and ATP gamma S (adenosine-5'-O-(3-thiotriphosphate)). AMPPNP and ATP gamma S are believed to trap myosin in two major conformational intermediates of the actomyosin ATPase cycle, respectively known as the weakly bound and strongly bound states. Previous ST-EPR experiments with solutions of acto-S1 have demonstrated that actin-bound myosin heads are rotationally mobile on the microsecond time scale in the presence of ATP gamma S, but not in the presence of AMPPNP. However, it is not clear that results obtained with acto-S1 in solution can be extended to actomyosin constrained within the myofibrillar lattice. Therefore, ST-EPR spectra of spin-labeled myofibrils were analyzed explicitly in terms of the actin-bound component of myosin heads in the presence of AMPPNP and ATP gamma S. The fraction of actin-attached myosin heads was determined biochemically in the spin-labeled myofibrils, using the proteolytic rates actomyosin binding assay. At physiological ionic strength (mu = 165 mM), actin-bound myosin heads were found to be rotationally mobile on the microsecond time scale (tau r = 24 +/- 8 microseconds) in the presence of ATP gamma S, but not AMPPNP. Similar results were obtained at low ionic strength, confirming the acto-S1 solution studies. The microsecond rotational motions of actin-attached myosin heads in the presence of ATP gamma S are similar to those observed for spin-labeled myosin heads during the steady-state cycling of the actomyosin ATPase, both in solution and in an active isometric muscle fiber. These results indicate that weakly bound myosin heads, in the pre-force phase of the ATPase cycle, are rotationally mobile, while strongly bound heads, in the force-generating phase, are rotationally immobile. We propose that force generation involves a transition from a dynamically disordered crossbridge to a rigid and stereospecific one.  相似文献   

9.
L Zhao  N Naber    R Cooke 《Biophysical journal》1995,68(5):1980-1990
Electron paramagnetic resonance spectroscopy was used to monitor the orientation of muscle cross-bridges attached to actin in a low force and high stiffness state that may occur before force generation in the actomyosin cycle of interactions. 2,3-butanedione monoxime (BDM) has been shown to act as an uncompetitive inhibitor of the myosin ATPase that stabilizes a myosin.ADP.P(i) complex. Such a complex is thought to attach to actin at the beginning of the powerstroke. Addition of 25 mM BDM decreases tension by 90%, although stiffness remains high, 40-50% of control, showing that cross-bridges are attached to actin but generate little or no force. Active cross-bridge orientation was monitored via electron paramagnetic resonance spectroscopy of a maleimide spin probe rigidly attached to cys-707 (SH-1) on the myosin head. A new labeling procedure was used that showed improved specificity of labeling. In 25 mM BDM, the probes have an almost isotropic angular distribution, indicating that cross-bridges are highly disordered. We conclude that in the pre-powerstroke state stabilized by BDM, cross-bridges are attached to actin, generating little force, with a large portion of the catalytic domain of the myosin heads disordered.  相似文献   

10.
Actomyosin interactions in the presence of ATP were examined by using site-specific antibodies directed against the first seven N-terminal residues on skeletal alpha-actin. Fab fragments of these antibodies (S alpha N Fab) inhibited effectively the actin-activated ATPase of myosin subfragment 1 (S-1) at both 5 and 25 degrees C. Binding experiments carried out in the presence of ATP at 5 degrees C revealed that the catalytic inhibition was related to the inhibition of S-1 binding to actin by Fab. At equimolar ratios of Fab to actin, the binding of S-1 to actin and the activated ATPase were inhibited by 75 and 82%, respectively. These results, when contrasted with the small effect of Fab on rigor actomyosin binding, suggest ATP-induced changes at the interface of actin and myosin.  相似文献   

11.
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.  相似文献   

12.
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.  相似文献   

13.
Force generation in muscle results from binding of myosin to F-actin. ATP binding to myosin provides energy to dissociate actomyosin complex while the hydrolysis of ATP is needed for re-binding of myosin to F-actin. At the end of each cycle myosin and actin form a tight complex with a substantial interface area. We investigated the dynamics of formation of actomyosin interface in presence and absence of nucleotides by quenched flow cross-linking technique. We showed previously that myosin head (subfragment 1, S1) directly interacts with at least two monomers in the actin filament. The quenched flow cross-linking experiments revealed that the initial contact (in presence or absence of nucleotides) occurs between loop 635-647 of S1 and 1-12 N-terminal residues of one actin and, then, the second contact forms between loop 567-574 of S1 and the N terminus of the second actin. The distance between these two loops in S1 corresponds to the distance between N termini of two actins in the same strand (53 A) but is smaller than that between two actins from the different strands (102 A). The formation of the actomyosin complex proceeds in ordered sequence: S1 initially binds to one actin then binds with the second actin located in the same strand but probably closer to the barbed end of F-actin. The presence of nucleotides slows down the interaction of S1 with the second actin, which correlates with recently proposed cleft movement in a 50 kDa domain of S1. The sequential mechanism of formation of actomyosin interface starting from one end and developing towards the barbed end might be involved in force generation and directional movement in actin-myosin system.  相似文献   

14.
Prochniewicz E  Walseth TF  Thomas DD 《Biochemistry》2004,43(33):10642-10652
We have used optical spectroscopy (transient phosphorescence anisotropy, TPA, and fluorescence resonance energy transfer, FRET) to detect the effects of weakly bound myosin S1 on actin during the actomyosin ATPase cycle. The changes in actin were reported by (a) a phosphorescent probe (ErIA) attached to Cys 374 and (b) a FRET donor-acceptor pair, IAEDANS attached to Cys 374 and a nucleotide analogue (TNPADP) in the nucleotide-binding cleft. Strong interactions were detected in the absence of ATP, and weak interactions were detected in the presence of ATP or its slowly hydrolyzed analogue ATP-gamma-S, under conditions where a significant fraction of weakly bound acto-S1 complex was present and the rate of nucleotide hydrolysis was low enough to enable steady-state measurements. The results show that actin in the weakly bound complex with S1 assumes a new structural state in which (a) the actin filament has microsecond rotational dynamics intermediate between that of free actin and the strongly bound complex and (b) S1-induced changes are not propagated along the actin filament, in contrast to the highly cooperative changes due to the strongly bound complex. We propose that the transition on the acto-myosin interface from weak to strong binding is accompanied by transitions in the structural dynamics of actin parallel to transitions in the dynamics of interacting myosin heads.  相似文献   

15.
Several atomic models of the actomyosin interface have been proposed based on the docking together of their component structures using electron microscopy and resonance energy-transfer measurements. Although these models are in approximate agreement in the location of the binding interfaces when myosin is tightly bound to actin, their relationships to molecular docking simulations based on computational free-energy calculations are investigated here. Both rigid-docking and flexible-docking conformational search strategies were used to identify free-energy minima at the interfaces between atomic models of myosin and actin. These results suggest that the docking model produced by resonance energy-transfer data is closer to a free-energy minimum at the interface than are the available atomic models based on electron microscopy. The conformational searches were performed using both scallop and chicken skeletal muscle myosins and identified similarly oriented actin-binding interfaces that serve to validate that these models are at the global minimum. These results indicate that the existing docking models are close to but not precisely at the lowest-energy initial contact site for strong binding between myosin and actin that should represent an initial contact between the two proteins; therefore, conformational changes are likely to be important during the transition to a strongly bound complex.  相似文献   

16.
E Prochniewicz  D D Thomas 《Biochemistry》2001,40(46):13933-13940
We have examined the effects of actin mutations on myosin binding, detected by cosedimentation, and actin structural dynamics, detected by spectroscopic probes. Specific mutations were chosen that have been shown to affect the functional interactions of actin and myosin, two mutations (4Ac and E99A/E100A) in the proposed region of weak binding to myosin and one mutation (I341A) in the proposed region of strong binding. In the absence of nucleotide and salt, S1 bound to both wild-type and mutant actins with high affinity (K(d) < microM), but either ADP or increased ionic strength decreased this affinity. This decrease was more pronounced for actins with mutations that inhibit functional interaction with myosin (E99A/E100A and I341A) than for a mutation that enhances the interaction (4Ac). The mutations E99A/E100A and I341A affected the microsecond time scale dynamics of actin in the absence of myosin, but the 4Ac mutation did not have any effect. The binding of myosin eliminated these effects of mutations on structural dynamics; i.e., the spectroscopic signals from mutant actins bound to S1 were the same as those from wild-type actin. These results indicate that mutations in the myosin binding sites affect structural transitions within actin that control strong myosin binding, without affecting the structural dynamics of the strongly bound actomyosin complex.  相似文献   

17.
We have used electron paramagnetic resonance to study the orientation of myosin heads in the presence of nucleotides and nucleotide analogs, to induce equilibrium states that mimic intermediates in the actomyosin ATPase cycle. We obtained electron paramagnetic resonance spectra of an indane dione spin label (InVSL) bound to Cys 707 (SH1) of the myosin head, in skinned rabbit psoas muscle fibers. This probe is rigidly immobilized on the catalytic domain of the head, and the principal axis of the probe is aligned nearly parallel to the fiber axis in rigor (no nucleotide), making it directly sensitive to axial rotation of the head. On ADP addition, all of the heads remained strongly bound to actin, but the spectral hyperfine splitting increased by 0.55 +/- 0.02 G, corresponding to a small but significant axial rotation of 7 degrees. Adenosine 5'-(adenylylim-idodiphosphate) (AMPPNP) or pyrophosphate reduced the actomyosin affinity and introduced a highly disordered population of heads similar to that observed in relaxation. For the remaining oriented population, pyrophosphate induced no significant change relative to rigor, but AMPPNP induced a slight but probably significant rotation (2.2 degrees +/- 1.6 degrees), in the direction opposite that induced by ADP. Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) relaxed the muscle fiber, completely dissociated the heads from actin, and produced disorder similar to that in relaxation by ATP. ATP gamma S plus Ca induced a weak-binding state with most of the actin-bound heads disordered. Vanadate had negligible effect in the presence of ADP, but in isometric contraction vanadate substantially reduced both force and the fraction of oriented heads. These results are consistent with a model in which myosin heads are disordered early in the power stroke (weak-binding states) and rigidly oriented later in the power stroke (strong-binding states), whereas transitions among the strong-binding states induce only slight changes in the axial orientation of the catalytic domain.  相似文献   

18.
The function of the src-homology 3 (SH3) domain in class II myosins, a distinct beta-barrel structure, remains unknown. Here, we provide evidence, using electron cryomicroscopy, in conjunction with light-scattering, fluorescence and kinetic analyses, that the SH3 domain facilitates the binding of the N-terminal extension of the essential light chain isoform (ELC-1) to actin. The 41 residue extension contains four conserved lysine residues followed by a repeating sequence of seven Pro/Ala residues. It is widely believed that the highly charged region interacts with actin, while the Pro/Ala-rich sequence forms a rigid tether that bridges the approximately 9 nm distance between the myosin lever arm and the thin filament. In order to localize the N terminus of ELC in the actomyosin complex, an engineered Cys was reacted with undecagold-maleimide, and the labeled ELC was exchanged into myosin subfragment-1 (S1). Electron cryomicroscopy of S1-bound actin filaments, together with computer-based docking of the skeletal S1 crystal structure into 3D reconstructions, showed a well-defined peak for the gold cluster near the SH3 domain. Given that SH3 domains are known to bind proline-rich ligands, we suggest that the N-terminal extension of ELC interacts with actin and modulates myosin kinetics by binding to the SH3 domain during the ATPase cycle.  相似文献   

19.
G DasGupta  E Reisler 《Biochemistry》1992,31(6):1836-1841
The binding of myosin subfragment 1 (S-1) to actin in the presence of ATP and the acto-S-1 ATPase activities of acto-S-1 complexes were determined at 5 degrees C under conditions of partial saturation of actin, up to 90%, by antibodies against the first seven N-terminal residues on actin. The antibodies [Fab(1-7)] inhibited strongly the acto-S-1 ATPase and the binding of S-1 to actin in the presence of ATP at low concentrations of S-1, up to 25 microM. Further increases in S-1 concentration resulted in a partial and cooperative recovery of both the binding of S-1 to actin and the acto-S-1 ATPase while causing only limited displacement of Fab(1-7) from actin. The extent to which the binding and the ATPase activity were recovered depended on the saturation of actin by Fab(1-7). The combined amounts of S-1 and Fab binding to actin suggested that the activation of the myosin ATPase activity was due to actin free of Fab. Examination of the acto-S-1 ATPase activities as a function of S-1 bound to actin at different levels of actin saturation by Fab(1-7) revealed that the antibodies inhibited the activation of the bound myosin. Thus, the binding of antibodies to the N-terminal segment of actin can act to inhibit both the binding of S-1 to actin in the presence of ATP and a catalytic step in ATP hydrolysis by actomyosin. The implications of these results to the regulation of actomyosin interaction are discussed.  相似文献   

20.
Structural insights into the interaction of smooth muscle myosin with actin have been provided by computer-based fitting of crystal structures into three-dimensional reconstructions obtained by electron cryomicroscopy, and by mapping of structural and dynamic changes in the actomyosin complex. The actomyosin structures determined in the presence and absence of MgADP differ significantly from each other, and from all crystallographic structures of unbound myosin. Coupled to a complex movement ( approximately 34 A) of the light chain binding domain upon MgADP release, we observed a approximately 9 degrees rotation of the myosin motor domain relative to the actin filament, and a closure of the cleft that divides the actin binding region of the myosin head. Cleft closure is achieved by a movement of the upper 50 kDa region, while parts of the lower 50 kDa region are stabilized through strong interactions with actin. This model supports a mechanism in which binding of MgATP at the active site opens the cleft and disrupts the interface, thereby releasing myosin from actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号