首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotavirus spike protein domain VP8* is essential for recognition of cell surface carbohydrate receptors, notably those incorporating N-acylneuraminic acids (members of the sialic acid family). N-Acetylneuraminic acids occur naturally in both animals and humans, whereas N-glycolylneuraminic acids are acquired only through dietary uptake in normal human tissues. The preference of animal rotaviruses for these natural N-acylneuraminic acids has not been comprehensively established, and detailed structural information regarding the interactions of different rotaviruses with N-glycolylneuraminic acids is lacking. In this study, distinct specificities of VP8* for N-acetyl- and N-glycolylneuraminic acids were revealed using biophysical techniques. VP8* protein from the porcine rotavirus CRW-8 and the bovine rotavirus Nebraska calf diarrhea virus (NCDV) showed a preference for N-glycolyl- over N-acetylneuraminic acids, in contrast to results obtained with rhesus rotavirus (RRV). Crystallographic structures of VP8* from CRW-8 and RRV with bound methyl-N-glycolylneuraminide revealed the atomic details of their interactions. We examined the influence of amino acid type at position 157, which is proximal to the ligand''s N-acetyl or N-glycolyl moiety and can mutate upon cell culture adaptation. A structure-based hypothesis derived from these results could account for rotavirus discrimination between the N-acylneuraminic acid forms. Infectivity blockade experiments demonstrated that the determined carbohydrate specificities of these VP8* domains directly correlate with those of the corresponding infectious virus. This includes an association between CRW-8 adaption to cell culture, decreased competition by N-glycolylneuraminic acid for CRW-8 infectivity, and a Pro157-to-Ser157 mutation in VP8* that reduces binding affinity for N-glycolylneuraminic acid.  相似文献   

2.
Radioactive gangliosides, N-[14C]-acetylneuraminylgalactosylglucosylceramide ([14C]GM3) and N- [14C]-acetylneuraminylgalactosyl-N-acetylgalactosaminyl- [N-acetylneuraminyl]-galactosylglucosylceramide ([14C]GD1a), were synthesized from CMP-[14C]sialic acid and the appropriate precursor glycolipid using specific sialyltransferase activities. These compounds were isolated and used as substrates to assay sialidase activity in HeLa cells. Although sodium butyrate added to the culture medium increased GM3 biosynthesis in HeLa cells, sialidase activity, as well as that of other glycohydrolases, was the same in control and butyrate-treated HeLa cells. The same sialidase activity appeared to hydrolyze both [14C]GM3 and [14C]GD1a, but not fetuin; the enzyme had a pH optimum of 5.0 and a Km of 75 μm for the ganglioside substrates. Although the cells contained a high sialidase activity (4–7 nmol/mg of protein/h) and could bind exogenously added [14C]GM3, no “ecto”-sialidase activity would be detected in intact cells under conditions where a close to physiological pH is maintained. The results indicate that ganglioside sialidase is not involved directly in the morphological and biochemical differentiation induced in HeLa cells by exposure to sodium butyrate.  相似文献   

3.
The role of gangliosides in the reception of low density lipoproteins (LDL) was studied using as targets mouse ascites hepatoma 22a (MAH) cells which bind LDL through a specific high affinity receptor. Low density lipoprotein binding and uptake by MAH cells decreased after brief treatment of the cells with neuraminidase to partially remove surface sialic acid residues. The LDL uptake capability of the neuraminidasetreated MAH cells was fully restored after incorporation of exogeneous GM1- and GD1a-gangliosides into the cell surface. In contrast, free (extracellular) gangliosides inhibited LDL uptake by native MAH cells. This inhibitory effect was seen at ganglioside concentrations corresponding to the ganglioside content of serum and was most pronounced with gangliosides whose sialic acids were linked to a terminal galactose residue (GM3, GD1a, GT1b) but was smaller or absent with gangliosides whose sialic acids were attached to an internal galactose (GM1, GM2). The binding of gangliosides to LDL was structure and concentration dependent, saturable and trypsin sensitive. The LDL-ganglioside interaction was further investigated by steady state fluorescence spectroscopy. Changes in the LDL fluorescence polarization were observed with as little as 0.01 M concentrations of the gangliosides. The magnitude and nature of the effect depended on the type of ganglioside. We conclude that the LDL surface possesses sites recognizing specific carbohydrate sequences of glycoconjugates and that changes in the cell surface concentrations of sialic acids significantly modulate the LDL uptake. It is postulated that shedding of gangliosides into the blood stream may be a factor involved in regulation of cholesterol homeostasis.Abbreviations MAH mouse ascites hepatoma 22a - LDL low density lipoprotein - ASM anthrylvinyl-labeled sphingomyelin [N-12-(9-anthryl-trans-dodecanoyl-sphingosine-1-phosphocholine] - RITC rhodamine isothiocyanate. The designation of gangliosides follows the IUPAC-IUB recommendation [1]: GM3, II3NeuAc-LacCer, II3-N-acetylneuraminosyllactosylceramide - GM2 II3-NeuAc-GgOse3Cer, II3-N-acetylneuraminosylgangliotriaosylceramide - GM1 II3-NeuAc-GgOse4Cer, II3-N-acetylneuraminosylgangliotetraosylceramide - GD1a, II3 IV3(NeuAc)2-GgOse4Cer, II3, IV3-di(N-acetylneuraminosyl)gangliotetraosylceramide - GT1b II3(NeuAc)2, IV3 NeuAc-GgOse4Cer, II3-di-N-acetylneuraminosyl, IV3-N-acetylneuraminosylgangliotetraosylceramide  相似文献   

4.
The outer capsid spike protein VP4 of rotaviruses is a major determinant of infectivity and serotype specificity. Proteolytic cleavage of VP4 into 2 domains, VP8* and VP5*, enhances rotaviral infectivity. Interactions between the VP4 carbohydrate‐binding domain (VP8*) and cell surface glycoconjugates facilitate initial virus‐cell attachment and subsequent cell entry. Our saturation transfer difference nuclear magnetic resonance (STD NMR) and isothermal titration calorimetry (ITC) studies demonstrated that VP8*64‐224 of canine rotavirus strain K9 interacts with N‐acetylneuraminic and N‐glycolylneuraminic acid derivatives, exhibiting comparable binding epitopes to VP8* from other neuraminidase‐sensitive animal rotaviruses from pigs (CRW‐8), cattle (bovine Nebraska calf diarrhoea virus, NCDV), and Rhesus monkeys (Simian rhesus rotavirus, RRV). Importantly, evidence was obtained for a preference by K9 rotavirus for the N‐glycolyl‐ over the N‐acetylneuraminic acid derivative. This indicates that a VP4 serotype 5A rotavirus (such as K9) can exhibit a neuraminic acid receptor preference that differs from that of a serotype 5B rotavirus (such as RRV) and the receptor preference of rotaviruses can vary within a particular VP4 genotype.  相似文献   

5.
We investigated the in vitro stimulatory effect of ganglioside (GM3, GD1a, GD1b, GT1b, or GQ1b)-containing liposomes on human immune cells. The effect of ganglioside-containing liposomes on the concentration of cytoplasmic free calcium ions ([Ca2+]1) in human immunocytes was examined using the confocal laser fluorescence microscopic method. The GD1a- and GT1b-containing liposomes significantly increased [Ca2+]1 of human T lymphocytes compared with the GM3-, GD1b- and GQ1b-containing ones. The response of CD8+ and CD4+ cells was significantly higher than that of CD20+ cells. Our results show that the increase in [Ca2+]i may be caused by not the number of sialic acids contained in the gangliosides but the conformation of the sialic acid moiety to protrude exteriorly from the liposomal membrane surface, and that a sort of receptor recognizing the sialic acid moiety exists on human T lymphocytes (both CD8+ and CD4+ cells), which may be involved in the activation of the cells. The present results are almost the same as those obtained for the rat T lymphocyte system previously reported. This clearly confirms that a sort of ganglioside surely stimulates T lymphocytes directly, which is not species-specific but conserved in humans and rats among animal species.  相似文献   

6.
Sialidases cleave off sialic acid residues from the oligosaccharide chain of gangliosides in their catabolic pathway while sialyltransferases transfer sialic acid to the growing oligosaccharide moiety in ganglioside biosynthesis. Ganglioside GM3 is a common substrate for both types of enzymes, for sialidase acting on ganglioside GM3 as well as for ganglioside GD3 synthase. Therefore, it is possible that both enzymes recognize similar structural features of the sialic acid moiety of their common substrate, ganglioside GM3. Based on this idea we used a variety of GM3 derivatives as glycolipid substrates for a bacterial sialidase (Clostridium perfringens) and for GD3 synthase (of rat liver Golgi vesicles). This study revealed that those GM3 derivatives that were poorly degraded by sialidase also were hardly recognized by sialyltransferase (GD3 synthase). This may indicate similarities in the substrate binding sites of these enzymes.  相似文献   

7.
A ganglioside fraction isolated from pooled intestines from newborn to 4-week-old piglets, which we previously partially characterized and showed to specifically inhibit the binding of porcine rotavirus (OSU strain) to host cells (M. D. Rolsma, H. B. Gelberg, and M. S. Kuhlenschmidt, J. Virol. 68:258–268, 1994), was further purified and found to contain two major monosialogangliosides. Each ganglioside was purified to apparent homogeneity, and their carbohydrate structure was examined by high-pH anion-exchange chromatography coupled with pulsed amperometric detection and fast atom bombardment mass spectroscopy. Both gangliosides possessed a sialyllactose oligosaccharide moiety characteristic of GM3 gangliosides. Compositional analyses indicated that each ganglioside was composed of sialic acid, galactose, glucose, and sphingosine in approximately a 1:1:1:1 molar ratio. Each ganglioside differed, however, in the type of sialic acid residue it contained. An N-glycolylneuraminic acid (NeuGc) moiety was found in the more polar porcine GM3, whereas the less polar GM3 species contained N-acetylneuraminic acid (NeuAc). Both NeuGcGM3 and NeuAcGM3 displayed dose-dependent inhibition of virus binding to host cells. NeuGcGM3 was approximately two to three times more effective than NeuAcGM3 in blocking virus binding. Inhibition of binding occurred with as little as 400 pmol of NeuGcGM3/50 ng of virus (~2 × 107 virions) and 2 × 106 cells/ml. Fifty percent inhibition of binding was achieved with 0.64 and 1.5 μM NeuGcGM3 and NeuAcGM3, respectively. The free oligosaccharides 3′- and 6′-sialyllactose inhibited binding 50% at millimolar concentrations, which were nearly 1,000 times the concentration of intact gangliosides required for the same degree of inhibition. Direct binding of infectious, triple-layer rotavirus particles, but not noninfectious, double-layered rotavirus particles, to NeuGcGM3 and NeuAcGM3 was demonstrated by using a thin-layer chromatographic overlay assay. NeuGcGM3 and NeuAcGM3 inhibited virus infectivity of MA-104 cells by 50% at concentrations of 3.97 and 9.84 μM, respectively. NeuGcGM3 (700 nmol/g [dry weight] of intestine) was found to be the predominant enterocyte ganglioside (comprising 75% of the total lipid-bound sialic acid) in neonatal piglets, followed by NeuAcGM3 (200 nmol/g [dry weight] of intestine). NeuGcGM3 and NeuAcGM3 together comprised nearly 100% of the lipid-bound sialic acid in the neonatal intestine, but their quantities rapidly diminished during the first 5 weeks of life. These data support the hypothesis that porcine NeuGcGM3 and NeuAcGM3 are physiologically relevant receptors for porcine rotavirus (OSU strain). Further support for this hypothesis was obtained from virus binding studies using mutant or neuraminidase-treated cell lines. Lec-2 cells, a mutant clone of CHO cells characterized by a 90% reduction in sialyllation of its glycoconjugates, bound less than 5% of the virus compared to control cell binding. In contrast, Lec-1 cells, a mutant CHO clone characterized by a deficiency in glycosylation of N-linked oligosaccharides, still bound rotavirus. Furthermore, exogenous addition of NeuGcGM3 to the Lec-2 mutant cells restored their ability to bind rotavirus in amounts equivalent to that of their parent (CHO) cell line. In the virus-permissive MA-104 cell line, NeuGcGM3 was also able to partially restore rotavirus infectivity in neuraminidase-treated cells. These data suggest that gangliosides play a major role in recognition of host cells by porcine rotavirus (OSU strain).  相似文献   

8.
The enzymatic basis for the differences in hepatic ganglioside patterns in the mouse strains C57Bl/6 and Swiss White (SW) was investigated. SW has a “Swiss-type” ganglioside profile, expressing GM1 ? and GD1a ? in addition to GM2 ? as major hepatic gangliosides, whereas C57Bl/6 shows a “GM2-type” profile, expressing only GM2 ? as the major hepatic ganglioside. The enzyme UDP-galactose:GM2 ganglioside galactosyltransferase (GM2-GalT), which catalyzes the synthesis of GM1 ganglioside, showed a four- to fivefold elevation in intact and solubilized liver Golgi membrane fractions of the SW strain compared to C57Bl/6. Crosses between C57Bl/6 and SW produced an F1 generation with a hepatic ganglioside and enzymatic phenotype intermediate between those of the two parental strains. All three genotypic groups show two forms of the Golgi apparatus enzyme with isoelectric points of 6.5–6.8 and 8.3–9.0. The simplest mode of action of genes which control the enzymatic phenotype that would be consistent with these findings are one or two structural genes or one or two cis-regulatory genes affecting the rate of enzyme synthesis.  相似文献   

9.
Gangliosides were isolated from human brain myelin, oligodendroglia, and neurons. Quantitative analysis revealed the following ganglioside contents: myelin, 2.0; neurons, 1.3; and oligodendroglia, 0.35 μg ganglioside sialic acid per mg protein. Myclin had a relatively simple ganglioside pattern with GM4 and GM1 as the predominant ganglioside species. The ganglioside pattern of oligodendroglia was quite complex and it resembled that of whole white matter rather than that of myelin. A high concentration of GM4 was found in oligodendroglial fractions in addition to GM1, GD1a, GD1b, and GT1b. The usually- minor brain gangliosides GM3, GM2, and GM3 were also enriched in oligodendroglia. The neuronal ganglioside pattern was generally similar to the pattern of whole gray matter. Both neurons and whole gray matter contained very low amounts of GM4. These results indicate that GM4 is specifically localized in myelin and oligodendroglia of the CNS. Evidence is also presented that myelin, but not oligodendroglia, is the major reservoir of human white matter GM1 and GM4.  相似文献   

10.
The interactions of ganglioside GM1 with human and fetal calf sera were studied, the following main results being obtained: (a) GM1, upon incubation with both sera gave origin to two GM1-protein complexes, which also occurred after interaction of GM1 with the albumin fractions prepared from the same sera. Instead no complex formation occurred using the albumin-free fractions. Therefore GM1 appeared to specifically bind serum albumin and to form GM1-albumin complexes. (b) GM1 binding to serum albumin started at ganglioside concentrations surely micellar (above 10?6 M), was time and concentration dependent, and resulted in a relevant degree of GM1 complexation (up to 80% of total GM1 in human serum and up to 18% in fetal calf serum). (c) the binding kinetics appeared, in both serum and the correspondent albumin fraction, to be biphasic: in the first phase, occurring till about 2 · 10?4 M GM1, the ratio between bound and total GM1 increased linearly with increasing GM1 concentration; in the second phase, occurring above 2 · 10?4 M, the ratio remained practically constant. After these findings it should be expected that GM1, when present in serum containing systems, forms complexes with albumin. This should be appropriately considered when studying the effects of exogeneous GM1 in in vivo and in vitro (tissue cultures) systems.  相似文献   

11.
Human liver extracts contain an activating protein which is required for hexosaminidase A-catalysed hydrolysis of the N-acetylgalactosaminyl linkage of GM2 ganglioside [N-acetylgalactosaminyl-(N-acetylneuraminyl) galactosylglucosylceramide]. A partially purified preparation of human liver hexosaminidase A that is substantially free of GM2 ganglioside hydrolase activity is used to assay the activating protein. The proceudres of heat and alcohol denaturation, ion-exchange chromatography and gel filtration were used to purify the activating protein over 100-fold from crude human liver extracts. When the purified activating protein is analysed by polyacrylamide-gel disc electrophoresis, two closely migrating protein bands are seen. When purified activating protein is used to reconstitute the GM2 ganglioside hydrolase activity, the rate of reaction is proportional to the amount of hexosaminidase A used. The activation is specific for GM2 ganglioside and and hexosaminidase A. The activating protein did not stimulate hydrolysis of asialo-GM2 ganglioside by either hexosaminidase A or B. Hexosaminidase B did not catalyse hydrolysis of GM2 ganglioside with or without the activator. Kinetic experiments suggest the presence of an enzyme–activator complex. The dissociation constant of this complex is decreased when higher concentrations of substrate are used, suggesting the formation of a ternary complex between enzyme, activator and substrate. Determination of the molecular weight of the activating protein by gel-filtration and sedimentation-velocity methods gave values of 36000 and 39000 respectively.  相似文献   

12.
Melanomas often accumulate gangliosides, sialic acid-containing glycosphingolipids found in the outer leaflet of plasma membranes, as disialoganglioside GD3 and its derivatives. Here, we have transfected the GD3 synthase gene (ST8Sia I) in a normal melanocyte cell line in order to evaluate changes in the biological behavior of non-transformed cells. GD3-synthase expressing cells converted GM3 into GD3 and accumulated both GD3 and its acetylated form, 9-O-acetyl-GD3. Melanocytes were rendered more migratory on laminin-1 surfaces. Cell migration studies using the different transfectants, either treated or not with the glucosylceramide synthase inhibitor d-1-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (PPPP), allowed us to show that while GM3 is a negative regulator of melanocyte migration, GD3 increases it. We showed that gangliosides were shed to the matrix by migrating cells and that GD3 synthase transfected cells shed extracellular vesicles (EVs) enriched in GD3. EVs enriched in GD3 stimulated cell migration of GD3 negative cells, as observed in time lapse microscopy studies. Otherwise, EVs shed by GM3+veGD3−ve cells impaired migration and diminished cell velocity in cells overexpressing GD3. The balance of antimigratory GM3 and promigratory GD3 gangliosides in melanocytes could be altered not only by the overexpression of enzymes such as ST8Sia I, but also by the horizontal transfer of ganglioside enriched extracellular vesicles. This study highlights that extracellular vesicles transfer biological information also through their membrane components, which include a variety of glycosphingolipids remodeled in disease states such as cancer.  相似文献   

13.
The effects of surfactants on the human liver hexosaminidase A-catalysed hydrolysis of Gm2 ganglioside were assessed. Some non-ionic surfactants, including Triton X-100 and Cutscum, and some anionic surfactants, including sodium taurocholate, sodium dodecyl sulphate, phosphatidylinositol and N-dodecylsarcosinate, were able to replace the hexosaminidase A-activator protein [Hechtman (1977) Can. J. Biochem. 55, 315–324; Hechtman & Leblanc (1977) Biochem. J. 167, 693–701) and also stimulated the enzymic hydrolysis of substrate in the presence of saturating concentrations of activator. Other non-ionic surfactants, such as Tween 80, Brij 35 and Nonidet P40, and anionic surfactants, such as phosphatidylethanolamine, did not enhance enzymic hydrolysis of Gm2 ganglioside and inhibited hydrolysis in the presence of activator. The concentration of surfactants at which micelles form was determined by measurements of the minimum surface-tension values of reaction mixtures containing a series of concentrations of surfactant. In the case of Triton X-100, Cutscum, sodium taurocholate, N-dodecylsarcosinate and other surfactants the concentration range at which stimulation of enzymic activity occurs correlates well with the critical micellar concentration. None of the surfactants tested affected the rate of hexosaminidase A-catalysed hydrolysis of 4-methylumbelliferyl N-acetyl-β-d-glucopyranoside. Both activator and surfactants that stimulate hydrolysis of Gm2 ganglioside decrease the Km for Gm2 ganglioside. Inhibitory surfactants are competitive with the activator protein. Evidence for a direct interaction between surfactants and Gm2 ganglioside was obtained by comparing gel-filtration profiles of 3H-labelled GM2 ganglioside in the presence and absence of surfactants. The results are discussed in terms of a model wherein a mixed micelle of surfactant or activator and GM2 ganglioside is the preferred substrate for enzymic hydrolysis.  相似文献   

14.
The 13C-n.m.r. spectra of asialo-GM1 and GM1-oligosaccharide are completely assigned and compared to those previously found for intact GM1 and for the series GM4, GM3, GM2, GM1, GD1a, GD1b, and GT1b. Removal of the ceramide residue from GM1 liberated a free, reducing aldehyde group, which was reflected in a doubling of the 13C-n.m.r. signals assignable to the d-glucose residue because of α,β equilibrium. The spectrum of asialo-GM1 lacks the resonances from the sialic acid residue, as expected; in addition, several resonances from the neutral gangliotetraglycosyl residue shifted to different field positions after removal of sialic acid from GM1. These resonances include that of C-4 of the inner β-d-galactosyl residue, and C-1 of the 2-acetamido-2-deoxy-d-galactosyl residue that is near the site of attachment of the sialosyl residue. The differences between the chemical shifts of the carbon resonances of oligomeric and monomeric saccharides, termed linkage shifts, provide a quantitative assignment aid. They are ~ 13 of those for residues linked to sialic acid than those for residues linked to the neutral hexose chain. Correlations among linkage shifts for pairs of glycosidically-linked carbon atoms for asialo-GM1 and GM1-oligosaccharide were compared with those for the series of gangliosides GM4 to GT1b, and differences are noted for resonances for carbon atoms near the sialic acid residue. The spectrum of ganglioside GM1b, a positional isomer of GM1 whose 13C-n.m.r. spectrum has not yet been observed, is predicted.  相似文献   

15.
Developmental profiles of gangliosides in mouse and rat cerebral cortex   总被引:8,自引:0,他引:8  
Summary Developmental profiles of 11 gangliosides, concentration of lipid- and glycoprotein-bound sialic acid, and activity of AChE of the rat and mouse cerebral cortex were followed from the 7th day of gestation to the 21st postnatal day.There are three main changes in ganglioside concentration, which are similar in both species. The first occurs from gestation day 10 until birth: parallel to decreased proliferation, cell migration, and neuroblast differentiation, GM3 and GD3 in mouse cortex and GD3 in the rat's decreases in favor of GQ1b, GT1b, and GD1a.The second occurs from birth until the first postnatal week: Parallel to increased growth and arborization of dendrites and axons as well as synaptogenesis in rats and mice, there is a two-fold rise of GD1a, whereas GQ1b and GT1b remain on a nearly constant level. Concomitantly, GM3 and GD3 decreases. The third period of ganglioside changes starts in the second postnatal week, parallel to onset of myelination, and is characterized by an increase of GM1 in parallel with a decrease of the polysialogangliosides GT1b and GQ1b.  相似文献   

16.
In previous investigations, we correlated levels of sialic acid, gangliosides, and ganglioside glycosyltransferases with tumorigenesis over a 24-week continuum of growth of hepatocellular neoplasms of the rat induced by the carcinogen N-2-fluorenylacetamide. However, metastatic tumors developed only rarely and were not analyzed. To investigate surface changes associated with metastasis, well-differentiated and poorly differentiated hepatocellular carcinomas were transplanted to syngeneic recipient rats. From those, several metastatic and nonmetastatic isolates were obtained and compared. Both total and ganglioside sialic acid amounts in transplantable hepatomas were elevated above control liver values but were significantly lower for metastatic lines than for nonmetastatic lines. The nonmetastatic lines were characterized by ganglioside patterns depleted in the precursor ganglioside GM3 (sialic acid-galactose-glucose-ceramide) and elevated in the products of the monosialoganglioside pathway. In contrast, metastatic isolates exhibited a restoration of GM3 and nearer normal amounts of other gangliosides. The findings point to differences in sialic acid-containing glycolipids, comparing metastatic and nonmetastatic hepatocellular carcinomas, and further extend the concept that ganglioside alterations do not cause tumorigenesis but are the end result of a cascade of events which apparently continue beyond the onset of metastasis.  相似文献   

17.
Shedding of immunosuppressive gangliosides is an important characteristic of both experimental and human tumors. Using a medulloblastoma cell line, Daoy, with a very high ganglioside expression (141 ± 13 nmol/108cells) and a well-characterized ganglioside complement, we have now studied ganglioside shedding by human brain tumor cells. Shedding of gangliosides, quantified by metabolic radiolabeling, was significant (169 pmol/108cells/h) and was generalized with respect to the major ganglioside carbohydrate structures (GM2, GM3, and GD1a). For each ganglioside, however, shedding was selective for ceramide structures containing shorter fatty acyl chains. Rapid and ceramide-selective shedding was confirmed in two additional human medulloblastoma cell lines, D341 Med and D283 Med (112 and 59 pmol/108cells/h). Significant ganglioside shedding is therefore a common characteristic of human medulloblastoma cells and may influence the biological behavior of this tumor, in view of immunosuppressive and other biological properties of shed gangliosides.  相似文献   

18.
The rotavirus spike protein VP4 mediates attachment to host cells and subsequent membrane penetration. The VP8(*) domain of VP4 forms the spike tips and is proposed to recognize host-cell surface glycans. For sialidase-sensitive rotaviruses such as rhesus (RRV), this recognition involves terminal sialic acids. We show here that the RRV VP8(*)(64-224) protein competes with RRV infection of host cells, demonstrating its relevance to infection. In addition, we observe that the amino acids revealed by X-ray crystallography to be in direct contact with the bound sialic acid derivative methyl alpha-D-N-acetylneuraminide, and that are highly conserved amongst sialidase-sensitive rotaviruses, are residues that are also important in interactions with host-cell carbohydrates. Residues Arg101 and Ser190 of the RRV VP8(*) carbohydrate-binding site were mutated to assess their importance for binding to the sialic acid derivative and their competition with RRV infection of host cells. The crystallographic structure of the Arg(101)Ala mutant crystallized in the presence of the sialic acid derivative was determined at 295 K to a resolution of 1.9 A. Our multidisciplinary study using X-ray crystallography, saturation transfer difference nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, and competitive virus infectivity assays to investigate RRV wild-type and mutant VP8(*) proteins has provided the first evidence that the carbohydrate-binding cavity in RRV VP8(*) is used for host-cell recognition, and this interaction is not only with the sialic acid portion but also with other parts of the glycan structure.  相似文献   

19.
Multilamellar liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distribution of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome prepartion. Liver uptake of encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from the liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

20.
The 1H-NMR spectra of the oligosaccharide derived from monosialoganglioside GM1 (GM1 = β-d-galactosyl-(1–3)-β-d-N-acetylgalactosaminyl-(1–4)-[α-N-acetylneuraminyl-(2–3)]-β-d-galactosyl-( 1–4)-β-d-glucosylceramide) (GM1OS) and its reduced form (GM1OS-R) have been obtained at 500 MHz in D2O. Through the combined use of one-dimensional and homonuclear two-dimensional spin-echo J-correlated (2D SECSY) spectra of GM1OS-R, the assignments for the ring protons of GM1OS are made. Data on chemical shifts and coupling constants of GM1OS including the α-linked neuraminic acid protons, in aqueous solution, are tabulated. Due to the very small coupling constants (<2 Hz) and the closeness in chemical shifts (<0.04 ppm) for the pair of correlated peaks in the two-dimensional spectrum, the information on the connectivities of the H5 ring protons of the neutral sugar residues is missing. Second-order coupling also blurs this information. Data are compared with those obtained for ganglioside GM1 in dimethyl sulfoxide (DMSO;the actual composition therein was 97% DMSO-d6 and 3% D2O) by T.A.W. Koerner, J. H. Prestegard, P. C. Demou, and R. K. Yu (1983, Biochemistry22, 2676). While the heterogeneity of chemical shifts for the H5, H6a, and H6b protons diminishes in D2O, that for A-9a and A-9b remains. The latter suggests an intraneuraminic acid conformation involving the glycerol side chain unaffected by the solvent. Moreover, the chemical shifts of the III-1, III-2, and A-4 protons (and perhaps the II-4, IV-2, and A-8 protons) in D2O exhibit unusual upfield shifts compared with those in DMSO. This indicates that the intramolecular interactions between GalNAc residue III and neuraminic acid present in DMSO are weakened in D2O. The effect of temperature on the conformation is also examined and appears to be minimal (<0.02 ppm) in the range 22–50 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号